期刊文献+

基于AMLF优化算法的机器学习框架的技术研究 被引量:1

Research on Machine Learning Framework Based on AMLF Optimization Algorithm
下载PDF
导出
摘要 为了克服传统机器学习算法及其框架的弊端,深入分析了K-均值算法与随机森林分类算法,提出了改进的AKM与ARF算法,建立了基于Spark平台技术的AMLF机器学习应用框架。由验证结果可知,AKM算法在各数据集中的分类准确率皆接近100%,具有较强的数据聚类能力,再者AKM算法在各数据集中的加速比皆较高,因而可升级性亦较强。而ARF验证结果显示,其不仅分类准确率较高,且可升级性较强。 In order to overcome the disadvantages of traditional machine learning algorithms and their frameworks,the K-means algorithm and random forest classification algorithm are deeply analyzed,the improved AKM and ARF algorithms are proposed,and the AMLF machine learning application framework based on Spark platform technology is established.The verification results show that the classification accuracy of AKM algorithm in each data set is close to 100%,and it has strong data clustering ability.In addition,the acceleration ratio of AKM algorithm in each data set is high,so it has strong scalability.The ARF verification results show that it not only has high classification accuracy,but also has strong scalability.
作者 查道贵 ZHA Daogui(Computer Information Department,Suzhou Vocational Technical College,Suzhou Anhui 234101,China)
出处 《佳木斯大学学报(自然科学版)》 CAS 2022年第1期56-59,共4页 Journal of Jiamusi University:Natural Science Edition
基金 安徽省教育厅自然科学重点项目(KJ2019A1058) 安徽省质量工程教研项目(2018jxtd051) 教育部《职业教育提质培优行动计划(2020-2023年)》高水平专业群《大数据(电子信息)专业群》建设 教育部《职业教育提质培优行动计划(2020-2023年)》精品在线开放课程《Python程序设计》。
关键词 AMLF K-均值算法 随机森林算法 SPARK AMLF K-means algorithm random forest algorithm Spark
  • 相关文献

参考文献6

二级参考文献57

  • 1吕爱锋,田汉勤,刘永强.火干扰与生态系统的碳循环[J].生态学报,2005,25(10):2734-2743. 被引量:66
  • 2王志勇,郭创新,曹一家.基于模糊粗糙集和神经网络的短期负荷预测方法[J].中国电机工程学报,2005,25(19):7-11. 被引量:53
  • 3李建平,张柏,张泠,王宗明,宋开山.湿地遥感监测研究现状与展望[J].地理科学进展,2007,26(1):33-43. 被引量:71
  • 4宋清昆,郝敏.一种改进的模糊C均值聚类算法[J].哈尔滨理工大学学报,2007,12(4):8-10. 被引量:26
  • 5Leo Breiman.Random Forests[J]. Machine Learning . 2001 (1)
  • 6Nitesh V. Chawla,Kevin W. Bowyer,Lawrence O. Hall,W. Philip Kegelmeyer.SMOTE: synthetic minority over-sampling technique. Journal of Artificial Organs . 2002
  • 7Miroslav Kubat,Robert C. Holte,Stan Matwin.??Machine Learning for the Detection of Oil Spills in Satellite Radar Images(J)Machine Learning . 1998 (2)
  • 8Nathalie Japkowicz,Shaju Stephen.The class imbalance problem: A systematic study. Intelligent Data Analysis . 2002
  • 9Gary M. Weiss,Foster Provost.Learning when training data are costly: the effect of class distribution on tree induction. Journal of Artificial Organs . 2003
  • 10Joshi,M,Kumar,V,Agarwal,R.Evaluating Boosting Algorithms to Classify Rare Classes:Comparison and Improvements. the 1st IEEE International Conference on Data Mining . 2001

共引文献223

同被引文献27

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部