摘要
塔式太阳能热电站通过大规模定日镜场反射汇聚太阳光,加热传热介质进行发电。针对实际运行过程中存在溢出损失的问题,提出最优抛物面式子镜倾斜策略,建立最小化平准化接收器度电成本优化模型获得最优的接收器参数,并提出一种结合智能蒙特卡洛采样方法的自适应粒子群算法快速求解。仿真结果展示了聚光集热系统优化前后电站效率的提高以及成本的降低,验证了方法的有效性。
In a solar power tower plant,solar radiation is reflected by the heliostat field and concentrated in the receiver to heat medium for power generation.An optimal paraboloid heliostat canting method was presented to reduce the annual spillage reducing the operation efficiency of the plant and an optimization method for reducing the levelized receiver cost of energy was built to find the optimal receiver parameters.An adaptive particle swarm optimization combined with smart sampling Monte Carlo method was proposed to improve the solving speed.Simulation results show that the optimization method could reduce the levelized cost of the receiver significantly.
作者
胡闹
赵豫红
冯结青
HU Nao;ZHAO Yu-hong;FENG Jie-qing(College of Control Science and Engineering,Zhejiang University,Hangzhou 310027,China;State Key Laboratory of CAD&CG,Zhejiang University,Hangzhou 310058,China)
出处
《高校化学工程学报》
EI
CAS
CSCD
北大核心
2021年第6期1041-1050,共10页
Journal of Chemical Engineering of Chinese Universities
基金
国家自然科学基金(61772464)。
关键词
塔式太阳能
聚光集热系统
子镜倾斜
接收器优化
智能蒙特卡洛采样
solar power tower plant
heliostat and receiver system
heliostat canting
receiver optimization
smart sampling Monte Carlo