期刊文献+

一类多时滞反应扩散HBV病毒模型的动力学分析 被引量:3

DYNAMICAL ANALYSIS OF A DIFFUSION HBV VIRUS DYNAMICS MODEL WITH TIME DELAYS
下载PDF
导出
摘要 研究了一类具有时滞的反应扩散病毒模型。利用抽象泛函微分方程讨论了该模型非负解的存在性和有界性,借助线性化方法获得了无病平衡点的局部渐近稳定性,构造相应的Lyapunov函数分别证明了无病平衡点的全局渐近稳定性和地方病平衡点的全局渐近稳定性,完善了已有的结果。 A diffusion HBV virus model with delay was investigated. By using the abstract functional differential equation, the existence and boundedness of its nonnegative solutions were discussed. The local stability of the uninfected steady state was analyzed by linearization technique, and the global stability of the uninfected steady and the infected steady state were studied with the direct Lyapunov method, which improves and extends some known results.
作者 蒲武军 PU wu-jun(Department of Mathematics,Longnan Teachers College,Longnan,Gansu 742500,China)
出处 《井冈山大学学报(自然科学版)》 2021年第6期8-13,共6页 Journal of Jinggangshan University (Natural Science)
基金 陇南市2019年科技指导性计划项目(2019-ZD-14)。
关键词 HBV病毒模型 扩散 时滞 渐近稳定性 李亚普诺夫函数 HBV virus dynamics model diffusion delay stability Lyapunov function
  • 相关文献

参考文献2

二级参考文献17

  • 1Wang Kaifa, Wang Wendi. Propagation of HBV with spatial dependence[J]. Mathematical biosciences, 2007, 210(1): 78-95.
  • 2Xu Rui, Ma Zhien. An HBV model with diffusion and time delay[J]. Journal of Theoretical Biology, 2009, 257(3): 499-509.
  • 3Zhang Yiyi, Xu Zhiting. Dynamics of a diffusive HBV model with delayed Beddington- DeAngelis response[J]. Nonlinear Analysis: Real World Applications, 2014, 15: 118-139.
  • 4Hattaf K, Yousfi N. A generalized HBV model with diffusion and two delays[J]. Computers & Mathematics with Applications, 2015, 69(1): 31-40.
  • 5McCluskey C C, Yang Yu. Global stability of a diffusive virus dynamics model with general incidence function and time delay[J]. Nonlinear Analysis: Real World Applications, 2015, 25: 64-78.
  • 6Stancevic O, Angstmann C N, Murray~J M, et al. Turing patterns from dynamics of early HIV infection[J]. Bulletin of Mathematical Biology, 2013, 75(5): 774-795.
  • 7Lai Xiulan, Zou Xingfu. Repulsion effect on superinfecting virions by infected cells[J]. Bul- letin of Mathematical Biology, 2014, 76(11): 2806-2833.
  • 8Fan Yonghong, Li Wantong. Global asymptotic stability of a ratio-dependent predator-prey system with diffusion[J]. Journal of Computational and Applied Mathematics, 2006, 188(2): 205-227.
  • 9Hattaf K, Yousfi N. Global stability for reaction-diffusion equations in biology[J]. Computers & Mathematics with Applications, 2013, 66(8): 1488-1497.
  • 10Ko W, Ryu K. Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a prey refuge[J]. Journal of Differential Equations, 2006, 231(2): 534- 550.

共引文献8

同被引文献19

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部