期刊文献+

NLi_(4)^(+)超碱团簇的结构及储氢性能的理论研究 被引量:2

THEORETICAL STUDY ON THE STRUCTURE AND HYDROGEN STORAGE PROPERITIES OF NLi_(4)^(+) SUPERALKALI CLUSTERS
下载PDF
导出
摘要 采用密度泛函理论(B3LYP)方法,在6-311++G(d,p)基组水平上对NLi4超碱团簇和NLi_(4)^(+)超碱离子团簇的几何结构和稳定性等物理化学性质进行理论计算,进而研究NLi_(4)团簇和NLi_(4)^(+)团簇的储氢性能。结果表明:NLi4团簇和NLi4+团簇结构稳定性均比较高,但是通过理论计算表明NLi_(4)团簇不能有效吸附氢分子,而NLi_(4)^(+)团簇在吸附氢分子过程中不仅结构稳定,而且NLi_(4)^(+)团簇中的每一个锂原子均可有效吸附3个氢分子,氢分子平均吸附能为1.517~2.931 kCal/mol,储氢质量分数达36.67 wt%,合适的吸附能和较高储氢容量表明NLi_(4)^(+)团簇可有望成为良好的储氢材料。 Using the density functional theory(B3LYP)method,the geometric structure,stability and other physical and chemical properties of NLi_(4) superalkali clusters and NLi_(4)^(+)superalkali ion clusters were theoretically calculated at the level of 6-311++G(d,p)basis set,and the hydrogen storage properties of NLi_(4) and NLi_(4)^(+)clusters were also studied.The results showed that:both of NLi_(4) and NLi_(4)^(+)clusters had good structural stability,but theoretical calculation showed that NLi_(4) clusters could not effectively adsorb hydrogen molecules,while NLi_(4)^(+)clusters were not only structurally stable in the process of adsorption of hydrogen molecules,but each lithium atom in the NLi_(4)^(+)clusters could effectively adsorb 3 hydrogen molecules.The average adsorption energies of hydrogen molecules was 1.517~2.931 kCal/mol,and the mass fraction of hydrogen storage reached 36.67 wt%.Appropriate adsorption energy and high hydrogen storage density indicated that NLi_(4)^(+)clusters were expected to be good hydrogen storage materials.
作者 刘婷婷 康闽 徐丝雨 阮文 LIU Ting-ting;KANG Min;XU Si-yu;RUAN Wen(College of Mathematics and Physics,Jinggangshan University,Ji’an,Jiangxi 343009,China)
出处 《井冈山大学学报(自然科学版)》 2021年第6期14-18,共5页 Journal of Jinggangshan University (Natural Science)
基金 国家自然科学基金项目(11764022) 江西省自然科学基金项目(20171BAB201020) 江西省教育厅科技计划项目(GJJ190559) 江西省大学生创新创业训练项目(S202010419042)。
关键词 NLi_(4)^(+)超碱离子团簇 密度泛函理论(DFT) 吸附能 储氢 NLi_(4)^(+) super alkali cluster density functional theory(DFT) adsorption energy hydrogen storage
  • 相关文献

参考文献2

二级参考文献17

  • 1KHANNA S N,JENA P. [J]. Chemical Physics Leters, 1994,219:479-483.
  • 2BERGERON D E, CASTLEMAN A W, MORISATO T, et al. [ J]. Science, 2004,304: 84-87.
  • 3BERGERON D E, ROACH P J, CASTLEMAN A W, et al. [J]. Science,2005,307:231-235.
  • 4REVELES J U,KHANNA S N,ROACH p J,et al. [J] .PNAS,2006,103:18405-18410.
  • 5GUTSEV G L, BOLDYREV A I. [J]. Chemical Physics Leters, 1982,92:262-266.
  • 6WU C H, KUDO H, I HLE H R. [ J]. Journal of Chemical Physics, 1979,70:1815-1821.
  • 7SCHLEYER P V R,WUERTHWEIN E U,POPLE J A. [J] .Journal of the American Chemical Society, 1982,104:5839-5841.
  • 8REBER A C, KHANNA S N, CASTLEMAN A W. [ J]. Journal of the American Chemical Society, 2007,129:10189-10194.
  • 9LI Y, WU D, LI Z R, et al. [ J]. Journal of Computational Chemistry,2007,28:1677-1684.
  • 10LI Y, WU D, LI Z R.[ J]. Inorganic Chemistry, 2008,47 : 9773-9778.

共引文献6

同被引文献6

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部