期刊文献+

主成分提取信息准则的加权规则 被引量:1

Weighted Rules for Principal Components Extraction Information Criteria
下载PDF
导出
摘要 并行主成分提取算法在信号特征提取中具有十分重要的作用,采用加权规则将主子空间(Principal subspace,PS)提取算法转变为并行主成分提取算法是很有效的方式,但研究加权规则对状态矩阵影响的理论分析非常少.对加权规则影响的分析不仅可以提供加权规则下的主成分提取算法动力学的详细认知,而且对于其他子空间跟踪算法转变为并行主成分提取算法的可实现性给出判断条件.本文通过比较Oja的主子空间跟踪算法和加权Oja并行主成分提取算法,通过两种算法的差异分析了加权规则对算法提取矩阵方向的影响.首先,针对二维输入信号,研究了提取两个主成分时加权规则的信息准则对状态矩阵方向的作用方式.进而,针对大于二维输入信号的情况,给出加权规则影响多个主成分提取方式的讨论.最后,MATLAB仿真验证了所提出理论的有效性. The parallel principal component extraction algorithms play an important role in signal feature extraction.It is very effective and very useful to modify the principal subspace(PS)extraction algorithms into parallel principal components extraction algorithms by using weighted rules,but so far,few people theoretically analyze the variation of the state matrix under the extraction algorithm of weighted rules.The analysis of this variation can not only provide detailed knowledge of the dynamics of the principal component extraction algorithms under weighted rules,but also give the realization conditions for transferring subspace extraction algorithms into parallel principal components extraction algorithm.In this paper,by comparing the difference between Oja principal subspace extraction algorithm and weighted Oja parallel principal components extraction algorithm,the influence of weighted rules on the extraction direction is analyzed.Firstly,for the case of extracting two principal components,the influence of the information criterion under the weighted rule on the direction of the state matrix is studied.Furthermore,for the case of extracting more than two principal components,a discussion is given on the manner where the weighted rules are applied.Finally,the MATLAB simulation verifies the validity of the proposed theory.
作者 杜柏阳 孔祥玉 罗家宇 DU Bo-Yang;KONG Xiang-Yu;LUO Jia-Yu(The Xi'an Researching Institute of High Technology,Xi'an 710025;The 96901 Unit of PLA,Beijing 100094)
出处 《自动化学报》 EI CAS CSCD 北大核心 2021年第12期2815-2822,共8页 Acta Automatica Sinica
基金 国家自然科学基金(61374120,61673387)资助。
关键词 主子空间提取算法 加权规则 并行主成分分析 信息准则 Principal subspace extraction algorithms weighted rule parallel principal components analysis information criterion
  • 相关文献

参考文献5

二级参考文献41

  • 1王炜,陈畏林,叶勇,徐智慧,贾斌.神经网络在高炉铁水硫含量预报中的应用[J].钢铁,2006,41(10):19-22. 被引量:6
  • 2Turk M, Pentland A. Eigenfaces for recognition. Journal of Cognitive Neuroscience, 1991, 3(1): 71-86.
  • 3Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720.
  • 4He X F, Yan S C, Hu Y X, Niyogi P, Zhang H J. Face recognition using Laplacianfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328-340.
  • 5Yang M H. Kernel eigenfaces vs. kernel fisherfaces: face recognition using kernel methods. In: Proceedings of the 5th IEEE International Conference on Automatic Face and Gesture Recognition. Washington, DC: IEEE, 2002. 215-220.
  • 6Yang J, Zhang D, Frangi A F, Yang J Y. Two-dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(1): 131-137.
  • 7Li M, Yuan B Z. 2D-LDA: a statistical linear discriminant analysis for image matrix. Pattern Recognition Letters, 2005, 26(5): 527-532.
  • 8Chen S B, Zhao H F, Kong M, Luo B. 2D-LPP: a two-dimensional extension of locality preserving projections. Neurocomputing, 2007, 70(4-6): 912-921.
  • 9Lee D D, Seung H S. Learning the parts of objects by non-negative matrix factorization. Nature, 1999, 401(6755): 788-791.
  • 10Zhang T P, Fang B, Tang Y Y, He G H, Wen J. Topology preserving non-negative matrix factorization for face recognition. IEEE Transactions on Image Processing, 2008, 17(4): 574-584.

共引文献70

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部