期刊文献+

基于注意力机制与Swin Transformer模型的腰椎图像分割方法 被引量:14

Lumbar Spine Image Segmentation Method Based on Attention Mechanism and Swin Transformer Model
下载PDF
导出
摘要 腰椎图像的精确分割是腰椎间盘疾病自动化诊断的重要前提,现有的分割方法在实际应用于分割任务时仍然存在无法精确分割的问题。对此,本文提出了一种基于注意力机制与Swin Transformer模型的腰椎图像分割网络模型。该模型在卷积网络中引入Swin Transformer模型,使用移动窗口的Transformer模块对卷积提取的高层语义信息进行全局信息建模;然后使用注意力机制对上采样过程中跳过连接中传递的低级特征施加权重,去除背景信息,最终实现腰椎图像的精细分割。实验结果表明,本文的腰椎图像分割方法相似度系数指标达到91.18%,性能优于UNet及其变型网络模型。 Accurate segmentation of lumbar images is an important prerequisite for the automatic diagnosis of lumbar intervertebral disc diseases.Existing segmentation methods still have the problem that they cannot be accurately segmented when they are actually applied to segmentation tasks.Therefore,this paper proposes a lumbar image segmentation network model based on the attention mechanism and the Swin Transformer model.The model introduces the Swin Transformer model into the convolution network,and uses the Transformer module of the moving window to model the global information of the high-level semantic information extracted by convolution;then,the attention mechanism is used to weight the low-level features passed in the skip connection in the up sampling process,remove the background information,and finally realize the fine segmentation of lumbar image.The experimental results show that the similarity index of the lumbar spine image segmentation method in this paper reaches 91.18%,and its performance is better than UNet and its variant network model.
作者 田应仲 卜雪虎 TIAN Yingzhong;BU Xuehu
出处 《计量与测试技术》 2021年第12期57-61,共5页 Metrology & Measurement Technique
关键词 腰椎图像分割 SwinTransformer模型 注意力机制 iumbar spine image segmentation Swin Transformer module attention mechanism
  • 相关文献

参考文献2

二级参考文献19

  • 1薛斌党,薛文芳,姜志国.三维种子填充算法的改进[J].计算机辅助设计与图形学学报,2006,18(10):1553-1556. 被引量:16
  • 2Gonzalez R C,Woods R E.数字图像处理[M].阮秋琦,阮宇智,译.2版.北京:电子工业出版社,2003.
  • 3Sahoo P K, Soltani S, Wong A K C, et al. Survey of thresholding techniques[J]. Computer Vision, Graphics, and Image Processing, 1988, 41(2): 233-260.
  • 4Pohlman S, Powell K A, Obuchowski N A, et al. Quantitative classification of breast tumores in digitized mamograms[J]. Medical Physics, 1996, 23(8): 1337-1345.
  • 5Vincent L, Soille P. Watersheds in digital spaces: an efficient algorithm based on immersion simulations [J]. IEEETransactions on Pattern Analysis and Machine Intelligence, 1991, 13(6): 583-598.
  • 6Cheng Y Z. Mean shift, mode seeking, and clustering [J]. Pattern Analysis and Machine Intelligence, 1995, 17(8) : 790- 799.
  • 7CUDA C Programming Guide Version 3.2 [M]. Santa Clara: NVIDIA Corporation, 2010.
  • 8Canny J F. A computational approach to edge detection [J]. Pattern Analysis and Machine Intelligence, 1986, 8(6) : 679- 698.
  • 9Hajjar A, Chen T. New real time edge linking algorithm and its VLSI implementation [C] //Proceedings of the Conference on Computer Architectures for Machine Perception. Los Alamitos: IEEE Computer Society Press, 1997:280-284.
  • 10Ogawa K, ho Y, Nakano K. Efficient Canny edge detection using a GPU [C] //Proceedings of the 1st International Conference on Networking and Computing. Los Alamitos: IEEE Computer Society Press, 2010:279-280.

共引文献39

同被引文献137

引证文献14

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部