期刊文献+

基于反距离权重法的寻乌县城区超标洪水淹没分析 被引量:1

Analysis of Exceeding Standard Flood in Xunwu County based on Inverse Distance Weight Method
原文传递
导出
摘要 文章以江西省寻乌县为例,利用反距离权重法插值分析了县城区遭遇50年、100年超标洪水时的洪水曲面,结合DEM数据分析了超标洪水淹没范围及影响人口。结果表明,在遭遇100年一遇洪水时,城区范围内受淹面积约2.46 km^(2),特别是城西居委会、城北村、三二五村、石圳村、小布村等行政村,是防御的重点。该方法实用性强、操作简便,分析过程中考虑最不利因素可满足超标洪水预案编制要求,可为快速编制城市或中小河流超标准洪水预案提供借鉴。 Taking Xunwu County of Jiangxi Province as an example,this paper analyzes the flood surface when the county urban area encounters 50-year and 100-year excessive flood by using inverse distance weight method,and analyzes the inundation range and affected population of excessive flood combined with DEM data.The results show that under the event of 100-years flood effect,the urban flooded area is about 2.46 km2.Especially the Chengxi neighborhood Committee,Chengbei Village,325 Village,Shizhen Village,Xiaobu Village,are the key protection area.This method is practical and easy to operate.Considering the most unfavorable factors in the analysis process,it can meet the requirements of over standard flood plan preparation,and can provide reference for rapid preparation of over standard flood plan for cities or small and medium-sized rivers.
作者 汪国斌 王海菁 李德龙 黄萍 WANG Guobin;WANG Haijing;LI Delong;HUANG Ping(Jiangxi Provincial Institute of Water Science,Nanchang 330029,China;State Key Laboratory of Hydrology Water Resources and Hydraulic Engineering in Hohai University,Nanjing 210098,China)
出处 《河南水利与南水北调》 2021年第11期9-11,共3页 Henan Water Resources & South-to-North Water Diversion
基金 江西省应急管理厅重点科技计划课题(JXYJ2130314-50601-1)。
关键词 反距离权重法 超标洪水 淹没分析 洪水风险 inverse distance weight method exceeding standard flood flood analysis flood risk
  • 相关文献

参考文献5

二级参考文献17

  • 1WISE S M.Effect of Differing DEM Creation Methods onthe Results from a Hydrological Model[J].Computers&Geosciences,2007,33:1351-1365.
  • 2AGUILAR F J,AGUERAF,AGUILAR M A,et al.Effectsof Terrain Morphology,Sampling Density,and Interpola-tion Methods on Grid DEM Accuracy[J].PhotogrammetricEngineering&Remote Sensing,2005,71(7):805-816.
  • 3FISHER P F,TATE N J.Causes and Consequences of Er-ror in Digital Elevation Models[J].Progress in PhysicalGeography,2006,30(4):467-489.
  • 4KRAUS K.Visulization of the Quality of Surface and theirDerivatives[J].Photogrammetric Engineering and RemoteSensing,1994,60(4):457-463.
  • 5CREUTIN J D,OBLED C.Objective Analyses and Map-ping Techniques for Rainfall Fields:An Objective Compari-son[J].Water Resources Research,1982,18:413-431.
  • 6ZIMMERMAN D,PAVLIK C,RUGGLES A,et al.AnExperimental Comparison of Ordinary and Universal Krig-ing and Inverse Distance Weighting[J].Mathematical Ge-ology,1999,31:375-390.
  • 7WWBWR D,ENGLUND E.Evaluation and Comparisonof Spatial Interpolators II[J].Mathematical Geology,1994,26:589-603.
  • 8CHAPLOT V.Accuracy of Interpolation Techniques forthe Derivation of Digital Elevation Models in Relation toLandform Types and Data Density[J].Geomorphology,2006,77:126-141.
  • 9LAM N S.Spatial Interpolation Methods:A Review[J].The American Cartographer,1983,10(2):129-149.
  • 10DECLERCQ F A N.Interpolation Methods for ScatteredSample Data:Accuracy,Spatial Patterns,ProcessingTime[J].Cartography and Geographic Information Sys-tems,1996,23(3):128-144.

共引文献104

同被引文献11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部