期刊文献+

Dechlorination of Crude Oil by Phase Transfer Catalyst via Nucleophilic Substitution Reaction

下载PDF
导出
摘要 Dechlorination of crude oil is an effective way to alleviate corrosion in refinery units,and the critical process is the removal of organochlorine which can be efficiently removed through nucleophilic substitution reaction catalyzed by phase transfer.Herein,seven typical chlorinated alkanes were selected as model compounds to study the mechanism of dechlorination of crude oil by phase transfer catalyst in the nucleophilic substitution method,and a new dechlorination reagent using hexamethyl quaternary ammonium hydroxide(HMQAH)with two quaternary ammonium groups as phase transfer catalyst,ethylenediamine as nucleophile and ethanol as solvent was developed.The results show that the dechlorinating performance of the dechlorination reagent on the model compounds decreases in the following order:epichlorohydrin>1,2-dichlorobutane>1,2-dichloroethane>1,3-dichloropropane>2-chloropropane>1-chlorobutane>chloroisobutane.Meanwhile the results of the reaction kinetics show that epichlorohydrin with epoxy structure has the lowest activation energy in the process of nucleophilic substitution reaction by the phase transfer catalyst which makes it easier to be removed by the dechlorination reagent.The removal rate of epichlorohydrin can reach up to 99.4%.The optimal dechlorination reagent used ethylenediamine as nucleophile,ethanol as solvent and HMQAH as phase transfer catalyst.The dechlorinating rate of the Iranian crude oil reached 71.6%under conditions covering a reaction temperature of 95℃,a reaction time of 90 minutes,a dechlorination reagent dosage of 1000μg/g,and a phase transfer reagent/nucleophile molar ratio of 6:1.In addition,the mechanism of phase transfer in nucleophilic substitution reaction of chloroalkanes was investigated in the paper.
出处 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2021年第4期18-28,共11页 中国炼油与石油化工(英文版)
基金 We acknowledge the financial support from the Joint Fund by the National Natural Science Foundation of China and PetroChina(Project U1862204).
  • 相关文献

参考文献7

二级参考文献63

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部