期刊文献+

Flow-Induced Vibration Fatigue Damage of A Pair of Flexible Cylinders in A Staggered Array

下载PDF
导出
摘要 Flow-induced vibration(FIV)of a group of long,flexible cylinders involves a complex interaction between fluid and structures.Although a substantial number of studies have been devoted to assessing FIV response behaviours,fatigue damage features of staggered flexible cylinders are not fully understood.Moreover,the wake-induced flutter constitutes an intricate hydrodynamic behaviour that frequently occurs when one cylinder is in the vicinity of another one.Unfortunately,existing studies on the fatigue damage caused by wake-induced flutter are incapable of achieving better results.This paper,therefore,estimates the FIV fatigue damage of two staggered flexible cylinders with an aspect ratio of 350 and a mass ratio of 1.90 based on normal S−N curves according to Det Norske Veritas(DNV)regulations.Twelve staggered cases(cross-flow spacing ratios of 2.0,3.0,4.0,and 6.0 and in-line spacing ratios of 4.0,6.0,and 8.0)are discussed for comparison,and fatigue damage caused by wake-induced flutter is thoroughly considered.Fatigue damage results indicate that the variation of the cross-flow(CF)spacing ratio has a greater influence than that of the in-line(IL)spacing ratio on the CF fatigue damage of the upstream cylinder.Lower IL fatigue damages of the upstream cylinder are observed when reduced velocity V_(r)≥15.03 due to the wake flow patterns with different IL spacing ratios.Moreover,wake interference,especially wake-induced flutter,predominates the fatigue damage characteristics of the downstream cylinder.When V_(r)=8.77−11.27,wake-induced flutter enhances the IL fatigue damage of the downstream cylinder and slightly affects that of the upstream body.Furthermore,wake-induced flutter causes considerable IL fatigue damage disparity between the two staggered cylinders by suppressing the IL fatigue damage of the upstream cylinder when V_(r)≥20.04.
出处 《China Ocean Engineering》 SCIE EI CSCD 2021年第6期878-890,共13页 中国海洋工程(英文版)
基金 financially supported by the National Natural Science Foundation of China(Grant No.51979193) the Major Consulting Project of Academy-Local Cooperation of Chinese Academy of Engineering(Grant No.2021DFZD2).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部