期刊文献+

基于DeepLab v3+的多任务图像拼接篡改检测算法 被引量:5

Multi-task Algorithm for Image Splicing Forgery Detection Based on DeepLab v3
下载PDF
导出
摘要 在图像拼接篡改检测任务中,受篡改区域尺度多样性及模糊操作的影响,传统分类算法难以提取图像篡改特征。提出一种基于DeepLab v3+的图像拼接篡改检测算法,使用浅层图像特征预测图像的篡改区域边界,提高模型对篡改边界的敏感性。在此基础上,通过多尺度融合特征对图像篡改区域进行分割,并在原空洞空间金字塔模块中融合空间和通道注意力机制,从而提高模型对多尺度篡改区域的适应性。实验结果表明,所提算法能有效检测图像的篡改区域,在CASIA v1.0和Columbia数据集中的分割精度分别为0.7546和0.7278,优于DCT、BAPPY、MFCN等算法。 In the detection of image splicing forgery,it is difficult for the traditional classification algorithms to extract the tampering features of the image due to the scale diversity of the tampered area and the interference of the fuzzy operation.In order to solve this problem,a multi-task algorithm based on Deeplab v3+is proposed for detecting image splicing forgery.The algorithm uses the shallow image features to predict the boundary of the tampered area,so the sensitivity of the model to the tampered area boundary is improved.On this basis,multi-scale fused features are used to segment the tampered area in the image.The spatial and channel attention mechanisms are integrated in the dilated spatial pyramid module to improve the adaptability of the model to multi-scale tampered areas.The experimental results show that the improved algorithm displays a segmentation accuracy of 0.7546 on the CASIA v1.0 dataset and 0.7278 on the Columbia dataset,outperforming DCT,BAPPY,MFCN and other advanced algorithms.
作者 朱昊昱 孙俊 陈祺东 ZHU Haoyu;SUN Jun;CHEN Qidong(School of Artificial Intelligence and Computer Science,Jiangnan University,Wuxi,Jiangsu 214122,China)
出处 《计算机工程》 CAS CSCD 北大核心 2022年第1期253-259,共7页 Computer Engineering
基金 国家重点研发计划(2018YFC1603303)。
关键词 图像拼接篡改检测 DeepLab v3+网络 多任务检测 注意力机制 空洞卷积 image spliced forgery detection Deep Lab v3+network multi-task detection attention mechanism arous convolution
  • 相关文献

参考文献2

二级参考文献18

  • 1王波,孙璐璐,孔祥维,尤新刚.图像伪造中模糊操作的异常色调率取证技术[J].电子学报,2006,34(B12):2451-2454. 被引量:39
  • 2孙堡垒 周琳娜 张茹.基于Benford定律的高斯模糊篡改取证.计算机研究与发展,2009,46:211-216.
  • 3王波,孔祥维,尤新刚.利用色彩一致性的数字伪造图像取证方法[C]//全国计算机安全学术交流会论文集,上海:中国科技大学出版社,2008.
  • 4Shen Xuanjing,Tang Bohao,Li Xiaofei.A Blur Image Blind Identify Algorithm Based on the Edge Fea-ture[C]//Proceedings of the 3th International Conference on Multimedia Information Networking and Security.Washington D.C.,USA:IEEE Press,2011:309-313.
  • 5Fan Shaosheng,Wang Hainan.Multi-direction Fuzzy Morphology Algorithm for Image Edge Detection[J].Journal of Networks,2011,6(6):95-898.
  • 6Peng Fei,Wang Xilan.Digital Image Forgery Forensics by Using Blur Estimation and Abnormal Hue Detec-tion[C]//Proceedings of 2010 Symposium on Photonics and Optoelectronic.Washington D.C.,USA:IEEE Press,2010:1-4.
  • 7Yang Benjuan,Zuo Juxian,Liu Benyong,et al.Blur Detection in Image Forensics Using Linear Correlation of Pixels[C]//Proceedings of 2010 Chinese Conference on Pattern Recognition.Washington D.C.,USA:IEEE Press,2010:1-5.
  • 8Sutcu Y,Coskun B,Sencar H T.Tamper Detection Based on Regularity of Wavelet Transforms Coeffici-ents[C]//Proceedings of International Conference on Multimedia and Explore.Washington D.C.,USA:IEEE Press,2007:397-400.
  • 9Wang Xin,Xuan Bo,Peng Silong.Digital Image Forgery Detection Based on the Consistency of Defocus Blur[C]//Proceedings of International Conference on Intelligent Information Hiding and Multimedia Signal Processing.Washington D.C.,USA:IEEE Press,2008:192-195.
  • 10Riess C,Angelopoulou E.Scene Illumination as an Indi-cator of Image Manipulation[M]//Bhme R,Fong P W L.Information Hiding.Berlin,Germany:Springer,2010:66-80.

共引文献6

同被引文献38

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部