期刊文献+

基于对抗深度学习的无人机航拍违建场地识别 被引量:4

Adversarial Deep Learning-based Unauthorized Construction Site Recognition Using UAV-assisted Aerial Photography
下载PDF
导出
摘要 对违建场地的检测方法主要是通过人工对无人机航拍视频进行检查,存在检测精度低、识别性能差、工作效率低的问题。提出一种结合空间变换网络与Fast RCNN的生成对抗网络ASTN-Fast RCNN,通过深度学习与无人机航拍视频相结合自动识别检测处在建设初期的违建场地。将空间变换网络作为生成器,生成Fast RCNN目标检测器难以识别的旋转形变样本,并通过目标检测器与生成器的对抗式训练,提高检测器的鲁棒性。实验结果表明,该方法能够有效提高对无人机航拍违建场地的识别性能。 The detection method of unauthorized construction site is mainly to manually check the UAV-assisted aerial photography,leading to low detection accuracy,poor recognition performance and low work efficiency.This paper combines deep learning and UAV-assisted aerial photography for automatic recognition of unauthorized construction site in the early development stage,and proposes a generative adversarial network named ASTN-Fast RCNN,which combines Spatial Transformer Network(STN)and Fast RCNN.The STN(generator)is used to generate rotated samples that Fast R-CNN(detector)cannot easily recognize.Through such adversary training,the robustness of the detector is improved.The experimental results show that the proposed method can significantly improve the performance of unauthorized construction site recognition.
作者 宫法明 徐晨曦 李厥瑾 GONG Faming;XU Chenxi;LI Juejin(College of Computer Science and Technology,China University of Petroleum,Qingdao,Shandong 266580,China;Undergraduate Academic Affairs Office,Shandong College of Electronic Technology,Jinan 250200,China)
出处 《计算机工程》 CAS CSCD 北大核心 2022年第1期275-280,287,共7页 Computer Engineering
基金 科技部创新方法工作专项(2015IM010300)。
关键词 违建场地识别 无人机航拍 深度学习 目标识别 生成对抗网络 空间变换网络 unauthorized construction site recognition UVA-assisted aerial photography Deep Learning(DL) target recognition Generative Adversarial Network(GAN) Spatial Transformer Network(STN)
  • 相关文献

参考文献4

二级参考文献31

  • 1Comaniciu D,Rameshand V,Meer P.Real-time Tracking of Non-rigid Objects Using Mean Shift[C]//Proceedings of CVPR’00.Hilton Head Island,USA:IEEE Press,2000:142-149.
  • 2Avidan S.Subset Selection for Efficient SVM Tracking[C]//Proceedings of CVPR’03.Madison,USA:IEEE Press,2003:85-92.
  • 3Adam A,Rivlin E,Shimshoni I.Robust MILments-based Tracking Using the Integral Histogram[C]//Proceedings of CVPR’06.New York,USA:IEEE Press,2006:798-805.
  • 4Viola P,Jones M J.Real-time Face Detection[J].International Journal of Computer Vision,2004,57(2):137-154.
  • 5Grabner H,Grabner M,Bischof H.Real-time Tracking via Online Boosting[C]//Proceedings of BMVC’06.Edinburgh,UK:[s.n.],2006:47-56.
  • 6Li Mu,Kwok J T,Lu Baoliang.Online Multiple Instance Learning with No Regret[C]//Proceedings of CVPR’10.San Francisco,USA:IEEE Press,2010:1395-1401.
  • 7Viola P,Platt J C,Zhang Cha.Multiple Instance Boosting for Object Detection[C]//Proceedings of NIPS’05.Whistler,Canada:[s.n.],2005:1417-1426.
  • 8Dietterich T G,Lathrop R H,Lozano-Pérez T.Solving the Multiple-instance Problem with Axis-parallel Rectangles[J].Artificial Intelligence,1997,89(1/2):31-71.
  • 9Babenko B,Yang M H,Belongie S.Visual Tracking with Online Multiple Instance Learning[C]//Proceedings of CVPR’09.Miami,USA:IEEE Press,2009:983-990.
  • 10Babenko B,Yang M H,Belongie S.Robust Object Tracking with Online Mutltiple Instance Learning[C]//Proceedings of PAMI’11.Miami,USA:IEEE Press,2011:983-990.

共引文献16

同被引文献44

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部