期刊文献+

信号分辨率增强的机械智能故障诊断方法研究 被引量:4

Intelligent fault diagnosis method for signal resolution enhancement
下载PDF
导出
摘要 利用深度学习来增强数据集已成为各个领域的研究热点,即使用有限的数据集生成更多仿真的数据集。不同于目前主流的生成对抗网络算法及其变体算法,基于样本分辨率增强的思想,提出了一种简单有效的算法——高效亚像素全连接神经网络(ESPFCN)。ESPFCN的原理为:对原始输入样本进行全连接操作,经过隐层特征映射输出四通道的低分辨率特征;通过亚像素全连接层,将四通道的低分辨率特征进行周期性的排列,得到一组高分辨率特征,实现了样本分辨率的增强。设置了一组特殊的轴承实验来评估生成模型的性能,实验结果验证了ESPFCN框架的有效性,并通过可视化展示了ESPFCN的特征学习过程。 Using deep learning to enhance dataset has become a hot topic in various fields.That is,using limited dataset to generate more simulated dataset.Different from the current mainstream generative adversarial network(GAN)and its variant algorithms,based on the idea of sample resolution enhancement,this paper proposes a simple and effective algorithm—an efficient sub-pixel fully connected neural network(ESPFCN).The principle of ESPFCN is:it performs fully-connected operation on the raw input samples and the results of four-channel multi-feature maps are output;through the fully connected sub-pixel layer,the low resolution features of the four channels are arranged periodically,and a set of high resolution features is obtained,which enhances the sample resolution.Finally,a set of special bearing experiment is set up to evaluate the performance of the generated model.The experimental results verify the effectiveness of the ESPFCN framework,and the feature learning process of ESPFCN is visualized.
作者 王晓玉 王金瑞 韩宝坤 张冬鸣 闫振豪 石兆婷 WANG Xiao-yu;WANG Jin-rui;HAN Bao-kun;ZHANG Dong-ming;YAN Zhen-hao;SHI Zhao-ting(College of Mechanical and Electronic Engineering,Shandong University of Science and Technology,Qingdao 266590,China)
出处 《振动工程学报》 EI CSCD 北大核心 2021年第6期1305-1312,共8页 Journal of Vibration Engineering
基金 中国博士后科学基金资助项目(2019M662399) 青岛博士后科研人员应用研究项目(01020240604)。
关键词 故障诊断 深度学习 分辨率增强 高效亚像素全连接神经网络 fault diagnosis deep learning resolution enhancement efficient sub-pixel fully connected neural network
  • 相关文献

参考文献3

二级参考文献54

  • 1张琳,孙安全,王天一,杨新宇,张学礼.某型导弹装备的故障智能诊断[J].中南大学学报(自然科学版),2013,44(S1):216-220. 被引量:4
  • 2高金吉.装备系统故障自愈原理研究[J].中国工程科学,2005,7(5):43-48. 被引量:46
  • 3陈予恕.机械故障诊断的非线性动力学原理[J].机械工程学报,2007,43(1):25-34. 被引量:56
  • 4GRAHAM-ROWE D, GOLDSTON D, DOCTOROW C, et al. Big data: Science in the petabyte era[J]. Nature, 2008, 455(7209): 8-9.
  • 5HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
  • 6KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems, 2012: 1097-1105.
  • 7BALDI P, SADOWSKI P, WHITESON D. Searching for exotic particles in high-energy physics with deep learning[J]. Nature Communications, 2014, 5(1): 1-9.
  • 8WORDEN K, STASZEWSKI W J, HENSMAN J J. Natural computing for mechanical systems research: A tutorial overview[J]. Mechanical Systems and Signal Processing, 2011, 25(1): 4-111.
  • 9BENGIO Y. Learning Foundations and Trends 2(1): 1-127. deep architectures for AI[J] in Machine Learning, 2009,.
  • 10ERHAN D, BENGIO Y, COURVILLE A, et al. Why does unsupervised pre-training help deep learning?[J]. The Journal of Machine Learning Research, 2010, 11: 625-660.

共引文献698

同被引文献31

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部