摘要
蚁群算法作为新型智能优化算法,应用于干扰资源分配时,寻优过程的收敛速度较慢,且获得全局最优值的概率较低。为了改善基于蚁群算法的干扰资源分配效率,同时提升得到全局最优解的概率,提出了衰减因子在寻优过程中按照指数型函数进行变化,即初始寻优阶段衰减因子取相对较小的数值,随着迭代次数的增加,衰减因子取值单调递增且呈现指数规律变化。仿真分析验证了所提方法的正确性,该方法不仅可以改善干扰资源分配过程中的收敛效率,同时具有较高的全局最优获取概率。
Ant Colony Optimization(ACO)is a new intelligence optimization algorithm.When applied to jamming resource allocation,the velocity of convergence in optimization process is slow and the probability of obtaining the global optimal solution is low.In order to raise the efficiency of jamming resource allocation and the probability of getting global optimal solution,the attenuation factor is improved to a variable that changes according to the exponential function in optimization process.The attenuation factor is taken as a relatively small value in the initial search phase,and increases monotonically and exponentially as the number of iterations increases.Simulation results illustrate the effectiveness of the proposed method,the high efficiency of jamming resource allocation,and higher global optimal solution acquisition probability.
作者
王青云
焦德忠
史铄
彭根燕
孙俊华
段雨昕
Wang Qingyun;Jiao Dezhong;Shi Shuo;Peng Genyan;Sun Junhua;Duan Yuxin(Beijing Information Technology Co,Ltd,Beijing 100094,China;Beijing Novsky Information Technology Co,Ltd,Beijing 100094,China;Beijing Simulation Center,Beijing 100854,China)
出处
《系统仿真学报》
CAS
CSCD
北大核心
2021年第12期2967-2974,共8页
Journal of System Simulation
基金
National Natural Science Foundation(61402365,61271300)
Shaanxi Education Natural Science Foundation(2013JK1076)
National Visiting Scholarship Program(201406965022)
Shaanxi Industry Surmount Foundation(2013K-33,2014KW01-04)。
关键词
干扰资源分配
蚁群算法
衰减因子
收敛性
稳定性
jamming resource allocation
ant colony optimization
attenuation factor
convergence
stability