摘要
长期以来,对实际航行中冰载荷的精确测量一直没有得到很好的解决。为了更好地解决上述问题,本文提出了一种基于数据的冰荷载反演新方法。建立反演模型的训练数据由有限元计算生成,并进行了详细描述。采用改进的灰狼优化算法对LSTM网络结构进行优化,成功地训练出了一种有效的基于LSTM网络的冰荷载反演模型,并且通过具体算例对该方法的有效性进行了说明。
Precise measurement of ice loads in actual navigation has not been worked out well for along time. To solve the problem better, a new method of ice load inversion based on data is proposedin the paper. The training data to establish the inversion model are generated by finite element calcu-lation. The process of training data generation is described explicitly. The structures of LSTM net-works are optimized by the refined grey wolf optimizer algorithm. A valid ice load inversion modelbased on LSTM networks is trained successfully. The general conclusions and results are illustratedby the concrete calculation samples.
作者
南明宇
胡嘉骏
汪雪良
弗拉基米尔·雅基莫夫
NAN Ming-yu;HU Jia-jun;WANG Xue-liang;VLADIMIR Yakimov(China Ship Scientific Research Center,Wuxi 214082,China;College of System Engineering,National University of Defense Technology,Changsha 410000,China;Bureau Hyperborea,Saint Petersburg 190000,Russia)
出处
《船舶力学》
EI
CSCD
北大核心
2021年第12期1675-1684,共10页
Journal of Ship Mechanics
基金
装备预研船舶重工联合基金项目(61411304010102)。
关键词
冰载荷
反演
深度学习
长短期记忆网络
灰狼算法
ice load
inversion problem
deep learning
LSTM networks
grey wolf optimizer algorithm