摘要
作为新兴合金材料,多主元高熵合金打破了传统合金中主要组成元素为一种或两种的合金设计理念,由至少五种主要元素构成,从而获得的高熵效应使其在性能上往往比传统合金具有更大的优势,如高硬度、高强度、抗高温氧化、耐腐蚀等。近年来,高熵合金薄膜的性能及制备技术同样备受学术界和工业界的关注。磁控溅射薄膜制备技术具有成膜温度低、膜层致密、结合力好等优点,已逐渐应用于高熵合金薄膜的制备及性能研究,具有非常大的工程应用前景。介绍直流、射频、离子束及脉冲磁控溅射的特点及其在高熵合金薄膜中的应用,重点分析不同磁控溅射技术下制备的高熵合金薄膜的相结构特点和规律,并系统地阐述薄膜优异的各种性能,最后展望磁控溅射技术制备高熵合金薄膜发展的方向。
As a new alloy material,multi-principal component high-entropy alloy breaks the traditional alloy design concept of one or two main elements,and is composed of at least five main elements.The high entropy effect makes it have more advantages than traditional alloys in performance,such as high hardness,high strength,high temperature oxidation resistance,corrosion resistance,etc.The properties and preparation techniques of high entropy alloy films have attracted much attention from academia and industry.Magnetron sputtering technology has been gradually applied to the preparation and performance research of high entropy alloy films because of its advantages such as low film forming temperature,dense film layer and good binding force.It has a very large engineering application prospect.This paper introduces the characteristics of direct current,radio frequency,ion beam and pulse magnetron sputtering and the application in the high entropy alloy thin film,analyzes the characteristics and law of phase structure of high entropy alloy films under different magnetron sputtering technology as well,and systematically expounds the excellent properties of the films,finally prospects the development direction of high entropy alloy films deposited by magnetron sputtering.
作者
罗朋
王晓波
巩春志
田修波
LUO Peng;WANG Xiaobo;GONG Chunzhi;TIAN Xiubo(State Key Laboratory of Advanced Welding and Joining,Harbin Institute of Technology,Harbin 150000,China;Institute of Materials,China Academy of Engineering Physics,Mianyang 621000,China)
出处
《中国表面工程》
EI
CAS
CSCD
北大核心
2021年第5期53-66,共14页
China Surface Engineering
基金
国家自然科学基金(11875119,12075071)
黑龙江省自然科学基金联合引导(LH2019A014)资助项目。
关键词
高熵合金薄膜
磁控溅射
相结构
性能
high entropy alloy film
magnetron sputtering
phase structure
performance