期刊文献+

基于多传感融合的目标追踪方法

Target Tracking Method Based on Multi-sensor Fusion
下载PDF
导出
摘要 自动驾驶已经成为未来汽车技术发展的一个重要方向。但现阶段自动驾驶汽车的感知精度不足已经成为限制自动驾驶汽车应用的一个重要因素。为解决上述问题,文章基于多传感器信息融合理论,提出一种自适应数据关联方法,分别考虑传感器的误差特性模型、目标的运动状态对数据关联的影响实现杂波环境中的目标追踪。并实验验证方法的有效性,实验结果表明,文章提出的融合感知结果能够有效地降低误差值,且目标轨迹追踪方法在所有实验场景中能100%保证目标编号的一致性。 Autonomous driving has become an important direction for the development of future automotive technology.However,the lack of perception accuracy of selfdriving cars at this stage has become an important factor restricting the application of selfdriving cars.In order to solve the above problems,this paper proposes an adaptive data association method based on the theory of multisensor information fusion,which considers the influence of the sensor's error characteristic model and the target's motion state on the data association to achieve target tracking in a cluttered environment.Design experiments to verify the effectiveness of the method.The experimental results show that the fusion sensing results proposed in this paper can effectively reduce the error value,and the target trajectory tracking method can 100%guarantee the consistency of the target number in all experimental scenarios.
作者 朱世豪 武一民 ZHU Shihao;WU Yimin(Vehicle Engineering,School of Mechanical Engineering,Hebei University of Technology,Tianjin 300131)
出处 《汽车实用技术》 2021年第24期38-42,共5页 Automobile Applied Technology
关键词 多传感器融合 目标追踪 自适应跟踪门限 Multi-sensor fusion Target tracking Adaptive tracking gate
  • 相关文献

参考文献1

二级参考文献6

  • 1Sun Z H,Bebis G.On-road vehicle detection:A re-view[].IEEE Transactions On Pattern Analysis AndMachine Intelligence.2006
  • 2Kadow U,Schneider G,Vukotich A,et al.Radar-vi-sion based vehicle recognition with evolutionary opti-mized and boosted features[].Proceedings of the IEEE Intelligent Vehicles Symposium.2007
  • 3Mendes A,Nunes U.Situation based multi-target de-tection and tracking with laserscanner in outdoor semistructured environment[].Proceedings of IEEE/RSJInternational Conference on Intelligent Robots and Sys-tems.2004
  • 4KHAMMARI A,NASHASHIBI F,ABRAMSON Y,LA_URGEAU C.Vehicle detection combining gradient analysisand AdaBoost classification[].IEEE Conference on In-telligent Transportation Systems.2005
  • 5Mahalanobis P C.On the generalized distance in statistics[].Proceedings of the National Institute of Sciences of India.1936
  • 6Alberto Broggi,Massimo Bertozzi,Alessandra Fascioli,CorradoGuarino Lo Bianco,Aurelio Piazzi.Visual Perception of Obstacles and Vehicles for Platooning[].IEEE Transactions on Intelligent transportation system.2000

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部