期刊文献+

Simultaneous removal of Cr(Ⅵ), Cd, and Pb from aqueous solution by iron sulfide nanoparticles: Influencing factors and interactions of metals 被引量:3

下载PDF
导出
摘要 Cadmium(Cd),lead(Pb),and hexavalent chromium(Cr(Ⅵ)) are often found in soils and water affected by metal smelting,chemical manufacturing,and electroplating.In this study,synthetic iron sulfide nanoparticles(FeS NPs) were stabilized with carboxymethyl cellulose(CMC) and utilized to remove Cr(Ⅵ),Cd,and Pb from an aqueous solution.Batch experiments,a Visual MINTEQ model,scanning electron microscopy(SEM),X-ray diffraction(XRD),and X-ray photoelectron spectrometer(XPS) analysis were used to determine the removal efficiencies,influencing factors,and mechanisms.The FeS NP suspension simultaneously removed Cr(Ⅵ),Cd,and Pb from an aqueous solution.The concentrations of Cr(Ⅵ),Cd,and Pb decreased from 50,10,and 50 mg·L^(-1) to 2.5,0.1,and 0.1 mg·L^(-1),respectively.The removal capacities were up to 418,96,and 585 mg per gram of stabilized FeS NPs,respectively.The acidic conditions significantly favored the removal of aqueous Cr(Ⅵ) while the alkaline conditions favored the removal of Cd and Pb.Oxygen slightly inhibited the removal of Cr(Ⅵ),but it had no significant influence on the removal of Cd and Pb.A potential mechanism was proposed for the simultaneous removal of Cr(Ⅵ),Cd,and Pb using FeS NPs.The interactions of the three heavy metals involved a cationic bridging effect on Cr(Ⅵ) by Cd,an enhanced adsorption effect on Cd by [Cr,Fe](OH)_3,precipitation of PbCrO_4,and transformation of PbCrO_4 to PbS.Therefore,FeS NPs have a high potential for use in the simultaneous removal of Cr(Ⅵ),Cd,and Pb from contaminated aqueous solutions.
出处 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第12期245-255,共11页 中国化学工程学报(英文版)
基金 supported by the National Natural Science Foundation of China (51778084) the National key Research&Development program of China (2018YFC1800305) the Chongqing Ecology and Environment Bureau (2019-128) the Sichuan Science and Technology Program (2019YFSY0005) the Large Instruments Open Foundation of Chongqing University (201903150051)。
  • 相关文献

参考文献4

二级参考文献10

共引文献177

同被引文献22

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部