期刊文献+

Cathode catalyst prepared from bacterial cellulose for ethanol fermentation stillage treatment in microbial fuel cell

下载PDF
导出
摘要 Bacterial cellulose doped with P and Cu was used as a catalyst for a microbial fuel cell(MFC) cathode,which was then used to treat ethanol fermentation stillage from food waste.Corresponding output power,coulombic efficiency(CE),and biological toxicity were detected.Through a series of characterization experiments,the addition of the cathode catalyst was found to improve catalytic activity and accelerate the consumption of the substrate.The resulting maximum output power was 572.16 mW·m^(-2).CE and the removal rate of chemical oxygen demand(COD) in the fermentation stillage by P-Cu-BC reached 26% and 64.5%,respectively.The rate of biotoxicity removal by MFC treatment reached 84.7%.The aim of this study was apply a novel catalyst for MFC and optimize the treatment efficiency of fermentation stillage.
出处 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第12期256-261,共6页 中国化学工程学报(英文版)
基金 supported by the Open Research Fund Program of Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry (CP-2019-YB7) support by Fundamental Research Funds for the Central Universities (TW2019014) support from Sino-US-Japan Joint Laboratory on Organic Solid Waste Resource and Energy Technology of USTB。
  • 相关文献

参考文献2

二级参考文献49

  • 1Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J.-M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366-377.
  • 2Orilall, M. C.; Wiesner, U. Block copolymer based composition and morphology control in nanostructured hybrid materials for energy conversion and storage: Solar cells, batteries, and fuel cells. Chem. Soc. Rev. 2011, 40, 520-535.
  • 3Guo, Y.-G.; Hu, J.-S.; Wan, L.-J. Nanostructured materials for electrochemical energy conversion and storage devices. Adv. Mater. 2008, 20, 2878-2887.
  • 4Dai, L. M. Functionalization of graphene for efficient energy conversion and storage. Acc. Chem. Res. 2013, 46, 31-42.
  • 5Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. Co304 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780-786.
  • 6Yang, S. B.; Bachman, R. E.; Feng, X. L.; Mullen, K. Use of organic precursors and graphenes in the controlled synthesis of carbon-containing nanomaterials for energystorage and conversion. Acc. Chem. Res. 2013, 46, 116-128.
  • 7Gao, M.-R.; Xu, Y.-F.; Jiang, J.; Yu, S.-FI. Nanostructured metal chalcogenides: Synthesis, modification, and applications in energy conversion and storage devices. Chem. Soc. Rev.2013, 42, 2986-3017.
  • 8Gong, K. P.; Du, F.; Xia, Z. H.; Durstock, M.; Dai, L. M. Nitrogen-doped carbon nanotube arrays with high electro-catalytic activity for oxygen reduction. Science 2009, 323, 760-764.
  • 9Xue, Y. H.; Liu, J.; Chen, H.; Wang, R. G.; Li, D. Q.; Qu, J.; Dai, L. M. Nitrogen-doped graphene foams as metal-free counter electrodes in high-performance dye-sensitized solar cells. Angew. Chem. Int. Ed. 2012, 51, 12124-12127.
  • 10Zhang, C. Z.; Mahmood, N.; Yin, H.; Liu, F.; Hou, Y. L. Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries. Adv. Mater. 2013, 25, 4932-4937.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部