摘要
Severe fever with thrombocytopenia syndrome virus(SFTSV)is an emerging tick-borne bunyavirus that causes hemorrhagic fever-like disease(SFTS)in humans with a case fatality rate up to 30%.To date,the molecular biology involved in SFTSV infection remains obscure.There are seven major genotypes of SFTSV(C1-C4 and J1-J3)and previously a reverse genetic system was established on a C3 strain of SFTSV.Here,we reported successfully establishment of a reverse genetics system based on a SFTSV C4 strain.First,we obtained the 5’-and 3’-terminal untranslated region(UTR)sequences of the Large(L),Medium(M)and Small(S)segments of a laboratory-adapted SFTSV C4 strain through rapid amplification of cDNA ends analysis,and developed functional T7 polymerase-based L-,M-and S-segment minigenome assays.Then,fulllength cDNA clones were constructed and infectious SFTSV were recovered from co-transfected cells.Viral infectivity,growth kinetics,and viral protein expression profile of the rescued virus were compared with the laboratory-adapted virus.Focus formation assay showed that the size and morphology of the foci formed by the rescued SFTSV were indistinguishable with the laboratory-adapted virus.However,one-step growth curve and nucleoprotein expression analyses revealed the rescued virus replicated less efficiently than the laboratory-adapted virus.Sequence analysis indicated that the difference may be due to the mutations in the laboratory-adapted strain which are more prone to cell culture.The results help us to understand the molecular biology of SFTSV,and provide a useful tool for developing vaccines and antivirals against SFTS.
基金
supported by grants from the National Natural Science Foundation of China(No.31900146
Open Research Fund Program of the State Key Laboratory of Virology of China(No.2020IOV003)
Team project of Health Commission of Hubei Province(WJ2019C003)。