期刊文献+

阵列误差条件下基于INI-MUSIC算法的二维DOA估计

2D DOA Estimation Based on INI-MUSIC Algorithm With Array Error
下载PDF
导出
摘要 针对轮换迭代算法在混合互耦误差和幅相误差条件下存在估计精度不高的问题,提出了一种改进非迭代多重信号分类(improved non-iterative multiple signal classification,INI-MUSIC)算法.改进算法利用误差系数在均匀圆阵下的特殊性质和矩阵向量转换定理,将幅相误差和互耦误差与波达方向(direction of arrival,DOA)估计角度分离,从而实现混合误差下的降维操作,进而通过重新构造代价谱峰函数对亏损的秩进行补偿,实现对DOA角度的估计和对误差系数的联合估计.此算法降低了混合误差条件下错误谱峰出现的概率,具有更好的二维DOA估计精度,工程应用价值更高. An improved non-iterative multiple signal classification(INI-MUSIC)algorithm was proposed to solve the problem of low estimation accuracy of rotation iterative algorithm under the condition of mixed mutual coupling error and amplitude gain error.The improved algorithm used the special properties of the error coefficients under a uniform circular array and the matrix-vector conversion theorem to separate the amplitude-phase error and the mutual coupling error from the DOA estimation,so as to realize the dimension reduction operation under the mixed error.Then the cost spectrum peak function was reconstructed to compensate the loss of rank and to obtain the estimation of the DOA angle and the joint estimation of the error coefficient.The probability of error spectrum peaks was reduced by the proposed algorithm,which has better two-dimensional DOA estimation accuracy,and has higher engineering application value.
作者 窦慧晶 杨帆 肖子恒 孙璐 DOU Huijing;YANG Fan;XIAO Ziheng;SUN Lu(Faculty of Information Technology,Beijing University of Technology,Beijing 100124,China)
出处 《北京工业大学学报》 CAS CSCD 北大核心 2022年第1期32-40,共9页 Journal of Beijing University of Technology
基金 国家自然科学基金资助项目(61171137) 北京市教育委员会科技发展计划资助项目(KM201210005001)。
关键词 多重信号分类算法 互耦误差 幅相误差 波达方向估计 非迭代算法 均匀圆阵 multiple signal classification(MUSIC)algorithm mutual coupling error gain/phase error direction of arrival(DOA)estimation non-iterative algorithm uniform circular array(UCA)
  • 相关文献

参考文献6

二级参考文献39

  • 1贾永康,保铮,吴洹.一种阵列天线阵元位置、幅度及相位误差的有源校正方法[J].电子学报,1996,24(3):47-52. 被引量:74
  • 2SCHMIDT R O. Multiple emitter location and signal parameter estimation [ J ]. IEEE Transactions on Antennas and Propagation,1986,34(3):267 - 280.
  • 3PRIEDLANDER B. A sensitivity analysis of the MUSIC algorithm[ J ]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1990,38(10) : 1740 - 1751.
  • 4SWINDLEHURST A, KAILATH T. A performance analysis of subspace-based methods in the presence of model error: Part Ⅰ --The MUSIC algorithm[J]. IEEE Transactions on Signal Processing, 1992,40(7) : 1758 - 1774.
  • 5HAMZA R,BUCKLEY K.An analysis of weighted eigenspace methods in the presence of sensor errors[ J]. IEEE Transactions on Signal Processing, 1995,43(5) : 1140 - 1150.
  • 6FERReOL A, LARZABAL P, VIBERG M. On the asymptotic performance analysis of subspace DOA estimation in the presence of modeling errors: case of MUSIC[ J]. IEEE Transactions on Signal Processing,2006,54(3):907- 920.
  • 7FERReOL A, LARZABAL P, VIBERG M. On the resolution probability of MUSIC in presence of modeling errors[J].IEEE Transactions on Signal Processing,2008,56(5): 1945- 1953.
  • 8WEISS A J, FRIEDLANDER B. Array shape calibration using eigenstructure methods[A]. 23rd Conference on Signals, Systems and Computers [ C ]. Asilomar: Aviv University Press, 1989.2:925 - 929.
  • 9FRIEDLANDER B,WEISS A J. Direction finding in the presence of mutual coupling [ J ]. IEEE Transactions on Antennas and Propagation, 1991,39(3) :273 - 284.
  • 10VIBERG M, SWINDLEHURST A L. A Bayesian approach to auto-calibration for parametric array signal processing[ J ]. IEEE Transactions on Signal Processing, 1994,42( 12):3495- 3507.

共引文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部