期刊文献+

基于响应面法内燃机整体式连杆热锻模具失效分析

Failure Analysis of Hot Forging Die for Integral Connecting Rod of Internal Combustion Engine Based on Response Surface Method
下载PDF
导出
摘要 以内燃机整体式连杆作为研究对象,基于数值模拟技术,以动模滑移速度﹑表面温度和表面压强为动模磨损量的判断依据,预测动模磨损位置;基于正交试验和响应面法,对桥部高度、模具硬度、摩擦系数和模腔边缘圆角进行多因素离散试验,预测内燃机整体式连杆动模磨损量;对优化结果连续进行10次数值模拟,绘制拟合曲线,计算动模使用寿命。试验结果表明,动模位置1所属区域为磨损最严重区域,响应面优化后动模磨损量预测最优值为1.28013×10^(-5) mm,对应的参数组合为桥部高度1.8mm,模具硬度HRC60,摩擦系数0.3和模腔边缘圆角2.0mm。该参数组合下,模拟动模磨损量最优值为1.342×10^(-5) mm,该动模磨损量方程拟合数据均符合边界要求,模型数据可信度高,误差仅为4.61%,可得内燃机整体式连杆动模寿命为4186次,符合生产要求。 Based on connecting rod of internal combustion engine and numerical simulation technology,the sliding speed,surface temperature and surface pressure of the dynamic mold are used to judge the wear of the dynamic mold to predict its wear position.Based on the orthogonal test and the response surface method,multi-factor discrete test is carried out on the bridge height,mold hardness,friction coefficients and cavity edge fillets to predict the wear of the integral connecting rod of the internal combustion engine.The optimization results are simulated continuously for 10 times,and the fitting curve is drawn to calculate the service life of the dynamic mold.The test results show that the area where the dynamic mold position 1 belongs is the most severely worn area.After the response surface optimization,the predicted optimal value of the dynamic mold wear is 1.28013×10^(-5) mm,and the corresponding parameter combination is the bridge height of 1.8mm,the mold hardness of HRC60,the friction coefficient of 0.3 and the cavity edge fillet of 2.0mm.The optimal value of the simulated dynamic model wear under this parameter combination is 1.342×10^(-5) mm.The fitting data of the dynamic model wear equation meets the boundary requirements,and the model data is credible high,the error is only 4.61%,and the service life of the integral connecting rod of the internal combustion engine is 4186 times,which meets the production requirements.
作者 董竹林 王培安 Dong Zhulin;Wang Peian(不详;College of Automotive Engineering,Shanxi Vocational University of Engineering and Technology,Jinzhong,Shanxi 030619,China)
出处 《工具技术》 北大核心 2021年第12期97-102,共6页 Tool Engineering
基金 中国管理科学研究院区域改革发展研究所教改课题(JJYJ0498) 中国管理科学研究院教育创新研究所教改课题(EDU-86-20200708001)。
关键词 连杆 数值模拟 动模磨损 响应面法 寿命预测 connecting rod numerical simulation dynamic mold wear response surface method life prediction
  • 相关文献

参考文献3

二级参考文献31

  • 1任建旭,胡亚娟.AT型尖轨跟端无切削锻造工艺的设计[J].哈尔滨铁道科技,2000(4):15-16. 被引量:10
  • 2卢祖文.我国铁路道岔的现状及发展[J].中国铁路,2005(4):11-14. 被引量:33
  • 3王雷刚,黄瑶,孙宪萍,刘全坤.基于修正Archard磨损理论的挤压模具磨损分析[J].润滑与密封,2006,31(3):10-12. 被引量:35
  • 4Jahamir S, Suh N P. The delamination theory of wear and the wear of a composite surface[J]. Wear, 1975, 32(1): 33-49.
  • 5Chowdhury, Roy S K, Pollock H M. Adhesion between metal surfaces: the effect of surface roughness[J]. Wear, 1981, 66(3): 307-321.
  • 6Jensen M R, Damborg F F, Nielsen K B. Applying the fininte element model for determination of tool wear in conventional deep-drawing[J]. Journal of Materials Processing Technology, 1998, 83(1/3): 98-105.
  • 7Archard J F. Microscopic aspects of adhesion and lubrication[J]. Tribology International, 1982, 15(5): 242.
  • 8Kang J H, Park I W, Jae J S, et al. A study on a die wear model considering thermal softening (Ⅰ): Construction of the wear model[J]. Journal of Materials Processing Technology, 1999, 96(1/3): 53-58.
  • 9Cser L, Geiger M, Lange K. Tool life and tool quality in bulk metal forming[J]. CIRP Annals-Manufacturing Technology, 1992, 41(2): 667-675.
  • 10Ghosh A K. A method for determining the coefficient of friction in punch streching of sheet metals[J]. Int J Mech Sci, 1977, 10(8): 457-470.

共引文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部