期刊文献+

Highly sensitive force measurements in an optically generated, harmonic hydrodynamic trap 被引量:7

原文传递
导出
摘要 The use of optical tweezers to measure forces acting upon microscopic particles has revolutionised fields from material science to cell biology.However,despite optical control capabilities,this technology is highly constrained by the material properties of the probe,and its use may be limited due to concerns about the effect on biological processes.Here we present a novel,optically controlled trapping method based on light-induced hydrodynamic flows.Specifically,we leverage optical control capabilities to convert a translationally invariant topological defect of a flow field into an attractor for colloids in an effectively one-dimensional harmonic,yet freely rotatable system.Circumventing the need to stabilise particle dynamics along an unstable axis,this novel trap closely resembles the isotropic dynamics of optical tweezers.Using magnetic beads,we explicitly show the existence of a linear force-extension relationship that can be used to detect femtoNewton-range forces with sensitivity close to the thermal limit.Our force measurements remove the need for laser-particle contact,while also lifting material constraints,which renders them a particu-larly interesting tool for the life sciences and engineering.
出处 《eLight》 2021年第1期69-77,共9页 e光学(英文)
基金 We thank Iain Patten for valuable discussions on the structure and layout of the manuscript.IDS kindly acknowledges funding from the Life grant by Volkswagen Foundation(Grant No.92772).
  • 相关文献

同被引文献43

引证文献7

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部