期刊文献+

基于VMD-WOA-LSSVM的汽轮机轴承振动趋势预测 被引量:4

Vibration Trend Prediction of Steam Turbine Bearings Based on VMD⁃WOA⁃LSSVM
下载PDF
导出
摘要 在火电厂中,汽轮机故障通常会导致轴承的异常振动,因此预测轴承的振动趋势能够为汽轮机故障提供借鉴依据,降低故障发生概率。针对振动数据具有随机性和波动性的问题,首先利用变分模态分解方法,将振动序列分解成一系列子模态,以降低振动序列的非平稳性。将分解出的分量作为最小二乘支持向量机(Least Squares Support Veetor Machine Classifiers,LSSVM)预测模型的输入,利用鲸鱼算法(Whale Optimization Algorthm,WOA)算法的寻优特性对LSSVM中的参数进行优化,从而建立超前一步预测模型,最后将各个子模态的预测结果相叠加,得到预测振动数据。为评估该模型的预测性能,以江苏某电厂的轴承振动实测数据为例进行仿真实验。结果表明,所提出的预测模型优于其他多种典型预测模型,表现出较好的预测性能。 In thermal power plants,the abnormal vibration of bearings usually leads to steam turbine failure.Therefore,predicting the vibration trend of bearings can provide a reference for steam turbine failure and reduce the probability of failure.The vibration data have the characteristics of randomness and fluctuation.Firstly,the vibration sequence was decomposed into a series of sub modes by using the variational mode decomposition method to reduce the non⁃stationary of the vibration sequence.The decomposed components were used as the input of LSSVM prediction model,and the parameters in LSSVM were optimized by using the optimization characteristics of WOA algorithm,so as to establish a one⁃step ahead prediction model.Lastly,the prediction results of each sub mode were superimposed to obtain the predicted vibration data.In order to evaluate the prediction performance of the model,the measured bearing vibration data of a power plant in Jiangsu Province were taken as an example for simulation verification.The results show that the proposed prediction model is better than many other typical prediction models and shows better prediction performance.
作者 李劲松 张双 董泽 王泽轩 罗代强 LI Jinsong;ZHANG Shuang;DONG Ze;WANG Zexuan;LUO Daiqiang(Guohua Dingzhou Power Generation Co.,Ltd.,Dingzhou 073000,China;Hebei Technology Innovation Center of Simulation&Optimized Control for Power Generation,North China Electric Power University,Baoding 071003,China;Guizhou Qianxi Zhongshui Power Generation Co.,Ltd.,Qianxi 551500,China)
出处 《山东电力技术》 2021年第12期61-67,共7页 Shandong Electric Power
基金 中央高校基本科研业务费专项资金项目“一类复杂流体网络建模方法研究”(2019MS098)。
关键词 振动趋势预测 变分模态分解 LSSVM预测模型 WOA算法 vibration trend prediction variational modal decomposition LSSVM prediction model WOA algorithm
  • 相关文献

参考文献11

二级参考文献102

共引文献485

同被引文献50

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部