摘要
以YOLOv5s网络模型为基础,引入注意力机制CBAM模块,基于Ghost卷积模块重构网络模型的卷积操作,提出一种面向扶梯不安全行为的改进型深度学习检测算法.然后,在自主收集的扶梯不安全行为数据集上对其进行训练评估.结果表明,所提算法在检测精度有所提高的同时,大幅减少了检测所需的参数量和计算量.
An improved deep learning detection algorithm for unsafe escalator behavior was proposed.The algorithm is based on the YOLOv5s network model,introduces the attention mechanism CBAM module,and reconstructs the convolution operation of the network model based on the Ghost convolution module.It is trained and evaluated on the self-collected escalator unsafe behavior data set.The results show that the proposed algorithm has improved the detection accuracy while greatly reducing the amount of parameters and calculation required for detection.
作者
李伟达
叶靓玲
郑力新
朱建清
曾远跃
林俊杰
LI Weida;YE Liangling;ZHENG Lixin;ZHU Jianqing;ZHENG Yuanyue;LIN Junjie(College of Engineering,Huaqiao University,Quanzhou 362021,China;Industrial Intelligence and System Fujian University Engineering Research Center,Huaqiao University,Quanzhou 362021,China;Quanzhou Branch of Special Equipment Inspection Research Institute,Quanzhou 362021,China)
出处
《华侨大学学报(自然科学版)》
CAS
2022年第1期119-126,共8页
Journal of Huaqiao University(Natural Science)
基金
国家自然科学基金面上资助项目(61976098)
福建省泉州市高层次人才创新创业项目(2020C042R)
福建省科技计划项目(2020Y0039)。