期刊文献+

面向扶梯不安全行为的改进型深度学习检测算法 被引量:1

Improved Deep Learning Detection Algorithm for Unsafe Escalator Behavior
下载PDF
导出
摘要 以YOLOv5s网络模型为基础,引入注意力机制CBAM模块,基于Ghost卷积模块重构网络模型的卷积操作,提出一种面向扶梯不安全行为的改进型深度学习检测算法.然后,在自主收集的扶梯不安全行为数据集上对其进行训练评估.结果表明,所提算法在检测精度有所提高的同时,大幅减少了检测所需的参数量和计算量. An improved deep learning detection algorithm for unsafe escalator behavior was proposed.The algorithm is based on the YOLOv5s network model,introduces the attention mechanism CBAM module,and reconstructs the convolution operation of the network model based on the Ghost convolution module.It is trained and evaluated on the self-collected escalator unsafe behavior data set.The results show that the proposed algorithm has improved the detection accuracy while greatly reducing the amount of parameters and calculation required for detection.
作者 李伟达 叶靓玲 郑力新 朱建清 曾远跃 林俊杰 LI Weida;YE Liangling;ZHENG Lixin;ZHU Jianqing;ZHENG Yuanyue;LIN Junjie(College of Engineering,Huaqiao University,Quanzhou 362021,China;Industrial Intelligence and System Fujian University Engineering Research Center,Huaqiao University,Quanzhou 362021,China;Quanzhou Branch of Special Equipment Inspection Research Institute,Quanzhou 362021,China)
出处 《华侨大学学报(自然科学版)》 CAS 2022年第1期119-126,共8页 Journal of Huaqiao University(Natural Science)
基金 国家自然科学基金面上资助项目(61976098) 福建省泉州市高层次人才创新创业项目(2020C042R) 福建省科技计划项目(2020Y0039)。
关键词 扶梯 不安全行为 目标检测 YOLOv5s CBAM模块 Ghost卷积模块 escalator unsafe behavior object detection YOLOv5s CBAM module Ghost convolution module
  • 相关文献

参考文献3

二级参考文献30

  • 1Candamo J, Shreve M,Goldgof D B, et al. Understanding transit scenes: a survey on human behavior-recognition algorithms[J]. IEEE Transactions on Intelligent Transpor- tation Systems, 2010,11 ( 1 ) : 206-224.
  • 2Chandola V, Banerjee A, Kumar V. Anomaly detection-a survey[J]. ACM Computing Surveys, 2009,41 (3) ; 1-58.
  • 3Ke S R,Thuc H L U,Lee Y J. A review on video-based human activity recognition [J]. Computers, 2013,2 ( 2 ) 88-131.
  • 4Wang T, Snoussi H. Detection of abnormal visual events via global optical flow orientation histogram r-J]. IEEE Transactions on Information Forensics and Security, 2014, 9(6) :988-998.
  • 5Foroughi H,Alishahi M, Pourreza H. Distinguishing fall ac- tivities using human shape characteristics[A. Proc. of In- ternational Joint Conference on Computer information Systems Sciences and EngineeringEC. 2010,523-528.
  • 6Suriani N S, Hussain A. Sudden fall classification using motion features EA-I. Proc. of International Colloquium on Signal Processing and its Applications[C. 2012, 519- 524.
  • 7Rezaee K, Haddadania J, Delbari A. Intelligent detection of the falls in the elderly using fuzzy inference system and video-based motion estimation methodEA. Proc. of Irani- an Conference on Machine Vision and Image Processing, 2013,284-288.
  • 8Yu M,Yu Y,Rhuma A,et al. An online one class support vector machine-based person-specific fall detection sys- tem for monitoring an elderly individual in a room environ- ment[J]. IEEE Journal of Biomedical and Health Informat- ics, 2013,17(6) : 1002-1014.
  • 9Yang W, Gao Y, Cao L. TRASMIL: a local anomaly detec- tion framework based on trajectory segmentation and multi-instance learning[J]. Computer Vision and Image Understanding, 2013,] 17 (10) :1273-1286.
  • 10Li X,Lu L,Yu J. A method of pedestrian abnormal behav- ior detection based on the trajectory modelEA. Proc. of International Conference on Transportation Engineering EC. 2013,2861-2867.

共引文献30

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部