期刊文献+

强化学习在车辆路径问题中的研究综述 被引量:9

Survey on Vehicle Reinforcement Learning in Routing Problem
下载PDF
导出
摘要 车辆路径问题是物流运输优化中的核心问题,目的是在满足顾客需求下得到一条最低成本的车辆路径规划。但随着物流运输规模的不断增大,车辆路径问题求解难度增加,并且对实时性要求也不断提高,已有的常规算法不再适应实际要求。近年来,基于强化学习算法开始成为求解车辆路径问题的重要方法,在简要回顾常规方法求解车辆路径问题的基础上,重点总结基于强化学习求解车辆路径问题的算法,并将算法按照基于动态规划、基于价值、基于策略的方式进行了分类;最后对该问题未来的研究进行了展望。 Vehicle routing problem is the key technologies in the field of logistics research.Its purpose is to get a lowest cost vehicle routing plan while meeting the customer’s needs.However,with the increasing of problem size in logistics transportation,the real-time requirement of solving vehicle routing problem is increasing,and the traditional algorithm cannot realize the requirements of the industry gradually.For decades,a number of new methods use reinforcement learning and deep reinforcement learning to solve vehicle routing problem.Base on simple analysis of conventional methods for solving vehicle routing problem,this review summaries the current algorithms for solving vehicle routing problem based on reinforcement learning.Reinforcement learning algorithms are divided into dynamic programming,value-based and policy-based.This paper summarizes the theoretical foundation and studying status.Finally,the future development direction of vehicle routing problem based on reinforcement learning and deep reinforcement learning is prospected.
作者 牛鹏飞 王晓峰 芦磊 张九龙 NIU Pengfei;WANG Xiaofeng;LU Lei;ZHANG Jiulong(College of Computer Science and Engineering,North Minzu University,Yinchuan 750021,China;The Key Laboratory of Images&Graphics Intelligent Processing of State Ethnic Affairs Commission,North Minzu Uni-versity,Yinchuan 750021,China)
出处 《计算机工程与应用》 CSCD 北大核心 2022年第1期41-55,共15页 Computer Engineering and Applications
基金 国家自然科学基金(62062001,61762019,61862051,61962002) 宁夏自然科学基金(2020AAC03214,2020AAC03219,2019AAC03120,2019AAC03119) 北方民族大学重大专项(ZDZX201901)。
关键词 车辆路径问题 马尔科夫决策过程 强化学习 深度强化学习 vehicle routing problem Markov decision process reinforcement learning deep reinforcement learning
  • 相关文献

参考文献3

二级参考文献38

  • 1马云峰,张敏,杨珺.物流设施选址问题中时间满意度函数的定义及应用[J].物流技术,2005,24(9):26-29. 被引量:28
  • 2王正国,刘振元,王红卫.适应性禁忌搜索算法求解带回程的时变速度车辆路径问题[J].计算机集成制造系统,2006,12(9):1453-1458. 被引量:4
  • 3BODIN L, GOLDEN B, ASSAD A. Routing and scheduling of vehicles and crews: the state of the art[J]. Computation and Operation Research, 1983, 52(10): 62- 212.
  • 4CLARKE G, WRIGHT JW. Scheduling of vehicles from a central depot to a number of delivery points[J]. Operations Research, 1964, 12(4): 568 - 581.
  • 5唐加福 董纲.航空票务公司免费接送服务中车次分配与调度问题的多目标规划模型及算法.管理科学学报,2009,12(6).
  • 6SOLOMON M M. Algorithms for the vehicle routing and scheduling problems with time window constraints[J]. Operations Research, 1987, 35(2): 254 - 265.
  • 7IOANNOU G, KRITIKOS, M, PRASTACOS G. A greedy lookahead heuristic for the vehicle routing problem with time windows[J]. Journal of the Operational Research Society, 2001, 52(5): 523 - 537.
  • 8BRAYSY O. A reactive variable neighborhood search for the vehicle routing problem with time windows[J]. INFORMS Journal on Computing, 2003, 15(4): 347 - 368.
  • 9POTVIN, J Y, ROUSSEAN J M. A parallel route building algorithm for the vehicle routing and scheduling problem with time windows[J]. European Journal of Operations Research, 1993, 66:331 - 340.
  • 10BRAYSY O, HASLE G, BERGER J, et al. Multi-start local search algorithm for the vehicle routing problem with time windows[J]. European Journal of Operational Research, 2004, 159(2): 586 - 605.

共引文献167

同被引文献155

引证文献9

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部