期刊文献+

改进人工鱼群的ORB特征匹配算法 被引量:3

Improved AFSA for ORB Feature Matching Algorithm
下载PDF
导出
摘要 针对室内轮椅定位与地图构建中传统ORB(oriented FAST and rotated BRIEF)受到特征点检测与选取策略的影响导致特征匹配正确率不理想,提出一种改进人工鱼群的ORB特征匹配算法。使用改进后的FAST检测特征点,利用改进后的人工鱼群在组合优化问题中具有收敛速度快且易获得最优解的特点,在图像中计算出不同特征区域,根据特征点所在区域位置赋予其相应的状态,对不同状态的特征点选择保留或去除,使用汉明距离的RANSAC算法在特征区域之间进行特征匹配。实验结果表明,改进后的FAST在图像边缘处提取到更多的图像特征,在实际环境中改进后的ORB匹配算法平均正确匹配率达到了92.7%,比传统ORB平均正确匹配率高52.3%。 In the field of in indoor wheelchair localization and mapping,aiming at the problem of the unsatisfactory feature matching accuracy of the traditional ORB(oriented FAST and rotated BRIEF)with feature point detection and selection strategies,an ORB feature matching algorithm of improved artificial fish swarms is proposed.Firstly,the improved FAST is used to the feature points.Then,since the improved artificial fish population has the characteristics of fast conver-gence and easy to obtain the optimal solution in the combinatorial optimization problem,it is used to calculate different feature areas in the image,the corresponding state is given according to the location of the feature points,the feature points of different states are selected to be retained or removed,and finally the RANSAC algorithm of Hamming distance is used to perform feature matching between the feature regions.The experiments show that the improved FAST can extract more image features at the image edges,and the average correct matching rate of the improved ORB matching algo-rithm in the actual environment reaches 92.7%,which is 52.3%higher than the traditional average correct matching rate.
作者 李思璇 胡志刚 王新征 付东辽 祖向阳 LI Sixuan;HU Zhigang;WANG Xinzheng;FU Dongliao;ZU Xiangyang(College of Medical Technology and Engineering,Henan University of Science and Technology,Luoyang,Henan 471003,China;Intelligent Rehabilitation Medical Robot Engineering Research Center in Henan,Luoyang,Henan 471003,China)
出处 《计算机工程与应用》 CSCD 北大核心 2022年第1期292-299,共8页 Computer Engineering and Applications
基金 河南省科技攻关计划项目(182102410046) 河南省高等学校重点科研计划项目(19A416002) 河南科技大学研究生创新基金(CXJJ-2019-CY07)。
关键词 改进FAST 改进人工鱼群 提取与选取策略 特征区域 improved FAST improved AFSA extraction and selection strategy feature areas
  • 相关文献

参考文献11

二级参考文献71

  • 1童宇,蔡自兴.基于特征匹配的全景图的生成[J].华中科技大学学报(自然科学版),2004,32(S1):77-79. 被引量:2
  • 2冷雪飞,刘建业,熊智.基于分支特征点的导航用实时图像匹配算法[J].自动化学报,2007,33(7):678-682. 被引量:33
  • 3戴汝为 周登勇.智能控制与适应性.第三届全球智能控制与自动化大会(WCICA'2000)[M].合肥:-,2000.11-17.
  • 4SINA A N, FRAHM J M,POLLEFEYS M,et al. Fe-at- ure tracking and matching in video using progr-ammable graphics hardware [ J ]. Machine Vision and Applica- tion, 2011,22( 1 ) :207-217.
  • 5BAY H, ESS A, TUYTELAAR T, et al. Speeded-up robust features(SURF) [ J]. Computer Vision and Im- age Understanding ( S1077-3142 ), 2008, 110 ( 3 ) : 346- 359.
  • 6RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB : an efficient alternative to SIFT or SURF [ J ]. Proceed- ings of the IEEE International Conference on Computer Vision, Barcelona, Spain, 2011:2564-2571.
  • 7LOWE D G. Object recognition from local scale-invariant tatures [ C]// Proceedings of the 1999 IEEE International Conference on Computer Vision. Piscataway, N J: IEEE, 1999:1150-1157.
  • 8BAY H, ESS A, TUYTELAARS T, et al. SURF: speeded up ro- bust feature [ J]. Computer Vision and Image Undeltanding, 2008, 110(3): 346-359.
  • 9RUBLEE E, RABAUD V, KONOL1GE K, et al. ORB: an efficient alternative to SIFT or SURF [ C]// Proceedings of the 2011 IEEE International Conference on Computer Vision. Piscataway, NJ: IEEE, 2011 : 2564 - 2571.
  • 10ROSTEN E, DRUMMOND T. Fusing points and lines hr high per- formance tracking [ C]// Proceedings of the 2005 IEEE Interna- tional Conference on Computer Vision. Piscataway, NJ: IEEE, 2005: 1508-1515.

共引文献1029

同被引文献36

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部