期刊文献+

基于注意力机制的NMS在目标检测中的研究 被引量:11

Research on non-maximum suppression based on attention mechanism in object detection
下载PDF
导出
摘要 非最大值抑制算法是目标检测中选择定位准确框的主要算法。针对算法仅以分类得分作为标准可能去除得分低但定位准确的预测框,并且对于有遮挡的情况更不友好的情况,提出了A-NMS方法。该方法将注意力机制融入非极大值抑制算法中,利用位置信息与框的得分信息相结合来调整框的最后得分。此外,还提出了改进的基于距离的交并比损失函数,重新定义了损失项,并将其引入到非极大值抑制中代替IOU来计算框间的交并比。最后将两种改进算法融合到3种经典的目标检测中,在Pascal-VOC 2012和MS-COCO 2017数据集上对上述两种算法进行了验证,结果表明检测精度得到了1%~2%的提升。 Non maximum suppression algorithm(NMS)is the main algorithm to select the accurate positioning box in object detection.The algorithm only takes the classification score as the standard,which may remove the prediction frame with low score but accurate positioning,and is more unfriendly to the situation with occlusion,A-NMS method is proposed,which integrates the attention mechanism into the non maximum suppression algorithm,and adjusts the final score of the box by combining the position information with the score information of the box.In addition,an improved distance based intersection union ratio loss function is proposed,the loss term is redefined,and it is introduced into non maximum suppression to calculate the intersection union ratio between frames instead of IOU.Finally,the two improved algorithms are integrated into three classical target detection.The above two algorithms are verified on Pascal-VOC 2012 and MS-COCO 2017 data sets.The results show that the detection accuracy has been improved by 1%~2%.
作者 张长伦 张翠文 王恒友 何强 刘屹伟 Zhang Changlun;Zhang Cuiwen;Wang Hengyou;He Qiang;Liu Xiwei(School of Science,Beijing University of Civil Engineering and Architecture,Beijing 100044,China)
出处 《电子测量技术》 北大核心 2021年第19期82-88,共7页 Electronic Measurement Technology
基金 国家自然科学基金项目(62072024) 北京建筑大学北京未来城市设计高精尖创新中心项目(UDC2017033322,UDC2019033324) 北京建筑大学市属高校基本科研业务费专项(X20084)资助。
关键词 非最大抑制 目标检测 注意力机制 non maximum suppression object detection attention mechanism
  • 相关文献

参考文献5

二级参考文献41

  • 1崔先强,杨元喜,高为广.多种有色噪声自适应滤波算法的比较[J].武汉大学学报(信息科学版),2006,31(8):731-735. 被引量:47
  • 2沈晔青,龚华军,熊琰.自适应卡尔曼滤波在目标跟踪系统中的应用[J].计算机仿真,2007,24(11):210-213. 被引量:13
  • 3WU Yi,LIM J,and YANG Minghsuan.Object tracking Benchmark[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(6):1442-1456.
  • 4WRIGHT J,MA Yi,MAIRAL J,et al.Sparse representation for computer vision and pattern recognition[J].Proceedings of the IEEE,2010,98(6):1031-1044.
  • 5MEI X and LING H.Robust visual tracking using L1 minimization[C].2009 IEEE 12th International Conference on Computer Vision,Kyoto,2009:1436-1443.
  • 6BAO Chenglong,WU Yi,LING Haibin,et al.Real time robust L1 tracker using accelerated proximal gradient approach[C].Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,Providence,RI,USA,2012:1830-1837.
  • 7ZHONG Wei,LU Huchuan,and YANG Minghsuan.Robust object tracking via sparse collaborative appearance model[J].IEEE Transactions on Image Processing,2014,23(5):2356-2368.
  • 8WANG N and YEUNG D Y.Learning a deep compact image representation for visual tracking[C].Advances in Neural Information Processing Systems,Nevada,2013:809-817.
  • 9GAO Jin,LING Haibin,HU Weiming,et al.Transfer Learning Based Visual Tracking with Gaussian Processes Regression[M].Computer Vision-ECCV 2014,Zurich:Springer International Publishing,2014:188-203.
  • 10YU K,ZHANG T,and GONG Y.Nonlinear learning using local coordinate coding[C].Advances in Neural Information Processing Systems.Vancouver,2009:2223-2231.

共引文献27

同被引文献124

引证文献11

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部