期刊文献+

Jointly Part-of-Speech Tagging and Semantic Role Labeling Using Auxiliary Deep Neural Network Model

下载PDF
导出
摘要 Previous studies have shown that there is potential semantic dependency between part-of-speech and semantic roles.At the same time,the predicate-argument structure in a sentence is important information for semantic role labeling task.In this work,we introduce the auxiliary deep neural network model,which models semantic dependency between part-of-speech and semantic roles and incorporates the information of predicate-argument into semantic role labeling.Based on the framework of joint learning,part-of-speech tagging is used as an auxiliary task to improve the result of the semantic role labeling.In addition,we introduce the argument recognition layer in the training process of the main task-semantic role labeling,so the argument-related structural information selected by the predicate through the attention mechanism is used to assist the main task.Because the model makes full use of the semantic dependency between part-of-speech and semantic roles and the structural information of predicate-argument,our model achieved the F1 value of 89.0%on the WSJ test set of CoNLL2005,which is superior to existing state-of-the-art model about 0.8%.
出处 《Computers, Materials & Continua》 SCIE EI 2020年第10期529-541,共13页 计算机、材料和连续体(英文)
基金 The work of this article is supported by Key Scientific Research Projects of Colleges and Universities in Henan Province(Grant No.20A520007) National Natural Science Foundation of China(Grant No.61402149).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部