期刊文献+

几种典型齿轮时变啮合刚度计算方法对比 被引量:8

A Comparation of Several Typical Gear Mesh Stiffness Calculation Methods
原文传递
导出
摘要 啮合刚度是齿轮传动的重要动力学特性参数,当齿轮运行状态发生变化,如出现齿根裂纹时,这种变化会在时变啮合刚度中体现.准确地计算齿轮的时变啮合刚度对模拟齿轮系统的动力学特性意义重大.势能法、有限元法和石川法是计算齿轮时变啮合刚度的常用方法.以正常及含齿根裂纹的渐开线直齿圆柱齿轮为研究对象,对这3种方法的综合时变啮合刚度结果进行了对比分析,结果表明:有限元法计算速度慢,但更能够适用于多种复杂裂纹结构下的啮合刚度的计算,计算原理与实际工况更为吻合;势能法与石川法的计算速度快,对于简单裂纹或多级齿轮传动,可以优先采用势能法与石川法进行计算. Gear mesh stiffness is an important dynamic characteristic parameter of gear transmission.When the running state of gear changes,such as the occurrence of tooth root crack,this change will be reflected in the time-varying mesh stiffness.Accurate calculation of the time-varying mesh stiffness of gear is of great significance to accurately simulate the dynamic characteristics of gear system.Potential energy method,the finite element method and Ishikawa method is a commonly used method.The time-varying meshing stiffness was calculated,that of gear based on the normal and tooth root crack of in volute spur gears as the research object,three methods of analysis were compared,the results show that the finite element method calculation speed is slow,but more able to apply to a variety of complex cracks under the structure of mesh stiffness calculation,calculation principle is more consistent with the actual working condition;The potential energy method and the Ishikawa method are fast to calculate.For simple crack or multistage gear transmission,the potential energy method and the Ishikawa method are preferred.
作者 周浩 杨大炼 蒋玲莉 李学军 ZHOU Hao;YANG Dalian;JIANG Lingli;LI Xuejun(Hunan Provincial Key Laboratory of Health Maintenance for Mechanical Equipment,Hunan University of Science and'Technology,Xiangtan 411201,China;School of Mechatronic Engineering and Automation,Foshan University,Foshan 528225,China)
出处 《湖南科技大学学报(自然科学版)》 CAS 北大核心 2021年第4期62-70,共9页 Journal of Hunan University of Science And Technology:Natural Science Edition
基金 国家自然科学基金资助项目(11872022) 湖南省自然科学基金资助项目(2021JJ30267) 教育厅优秀青年项目资助(21B0484) 湖湘青年英才支持计划资助项目(2017RS3049)。
关键词 齿轮 时变啮合刚度 势能法 有限元法 石川法 gear gear time-varying mesh stiffness potential energy method finite element method Ishikawa method
  • 相关文献

参考文献6

二级参考文献43

  • 1日本机械学会.齿轮强度设计资料[M].北京:机械工业出版社,1984..
  • 2Song He.Effect of Sliding Friction on Spur and Helical Gear Dynamics and Vibro-Acoustics[D].Athens:The Ohio State University,2008:24-26.
  • 3Jian Lin,Robert G.Parker.Mesh Stiffness Variation Instabilities in Two-Stage Gear Systems[J].Journal of Vibration and Acoustics.ASME,2002(124):68-76.
  • 4J.Lin,R.G.Parker.Planetary Gear Parametric Instability Caused by Mesh Stiffness Variation[J].Journal of Sound and Vibration,2002,249(1):129-145.
  • 5Y.Cai.Simulation on the Rotational Vibration of Helical Gears in Consideration of the Tooth Separation Phenomenon (A New Stiffness Function of Helical Involutes Tooth Pair)[J].Journal of Mechanical Design.ASME,1995(117):460-469.
  • 6陈作炳 刘志善.直齿轮刚度分析和计算.齿轮,1987,11(1):11-14.
  • 7J.-H.Kuang,A.-D.Lin.Theoretical Aspect of Torque Responses in Spur Gearing due to Mesh Stiffness Variation[J].Mechanical Systems and Processing,2003,17(2):255-271.
  • 8WU Siyan, ZUO Mingjian, ANAND. Simulation of spur gear dynamics and estimation of fault growth[J]. Journal of Sound and Vibration, 2008, 317(3): 608-624.
  • 9ENDO H, RANDALL R. Differential diagnosis of spall vs. cracks in the gear tooth fillet region: Experimental validation[J]. Mechanical Systems and Signal Processing, 2009, 23(3): 636-651.
  • 10DING H, KAHRAMAN A. Interaction between nonlinear spur gear dynamic and surface wear[J]. Journal of Sound and Vibration, 2007, 307(3): 662-679.

共引文献151

同被引文献88

引证文献8

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部