期刊文献+

Privacy Protection Algorithm for the Internet of Vehicles Based on Local Differential Privacy and Game Model 被引量:5

下载PDF
导出
摘要 In recent years,with the continuous advancement of the intelligent process of the Internet of Vehicles(IoV),the problem of privacy leakage in IoV has become increasingly prominent.The research on the privacy protection of the IoV has become the focus of the society.This paper analyzes the advantages and disadvantages of the existing location privacy protection system structure and algorithms,proposes a privacy protection system structure based on untrusted data collection server,and designs a vehicle location acquisition algorithm based on a local differential privacy and game model.The algorithm first meshes the road network space.Then,the dynamic game model is introduced into the game user location privacy protection model and the attacker location semantic inference model,thereby minimizing the possibility of exposing the regional semantic privacy of the k-location set while maximizing the availability of the service.On this basis,a statistical method is designed,which satisfies the local differential privacy of k-location sets and obtains unbiased estimation of traffic density in different regions.Finally,this paper verifies the algorithm based on the data set of mobile vehicles in Shanghai.The experimental results show that the algorithm can guarantee the user’s location privacy and location semantic privacy while satisfying the service quality requirements,and provide better privacy protection and service for the users of the IoV.
出处 《Computers, Materials & Continua》 SCIE EI 2020年第8期1025-1038,共14页 计算机、材料和连续体(英文)
基金 This work is supported by Major Scientific and Technological Special Project of Guizhou Province(20183001) Research on the education mode for complicate skill students in new media with cross specialty integration(22150117092) Open Foundation of Guizhou Provincial Key Laboratory of Public Big Data(2018BDKFJJ014) Open Foundation of Guizhou Provincial Key Laboratory of Public Big Data(2018BDKFJJ019) Open Foundation of Guizhou Provincial Key Laboratory of Public Big Data(2018BDKFJJ022).
  • 相关文献

参考文献2

二级参考文献105

  • 1潘晓,肖珍,孟小峰.位置隐私研究综述[J].计算机科学与探索,2007,1(3):268-281. 被引量:65
  • 2Yang B, Lu H, Jensen C S. Scalable continuous range monitoring of moving objects in symbolic indoor space//Proeeedings of the 18th ACM Conference on Information and Knowledge Management. Hong Kong, China, 2009:671-680.
  • 3Wolfson O, Sistla P A, Chamberlain S, Yesha Y. Updating and querying databases that track mobile units. Distributed and Parallel Databases, 1999, 7(3): 257-387.
  • 4Pfoser D, Jensen C S. Capturing the uncertainty of movingobjects representations//Proceedings of the 6th International Symposium on Advances in Spatial Databases. Hong Kong, China, 1999:111-132.
  • 5Cheng R: Kalashnikov D V, Prabhakar S. Querying imprecise data in moving object environments. IEEE Transactions on Knowledge and Data Engineering, 2004, 16(9): 1112- 1127.
  • 6Zhang M, Chen S, Jensen C S, Ooi B C, Zhang Z. Effectively indexing uncertain moving objects for predictive queries// Proceedings of the VLDB Endowment. Lyon, 2009, 2 (1): 1198-1209.
  • 7Cheng R, Chen L, Chen J, Xie X. Evaluating probability threshold k-nearest-neighbor queries over uncertain data// Proceedings of the 12th International Con/erence on Extending Database Technology. Saint Petersburg, 2009 :672-683.
  • 8Tao Y, Cheng R, Xiao X, Ngai W K, Kao B, Prabhakar S. Indexing multi-dimensional uncertain data with arbitrary probability density funetions//Proceedings of the 31st International Conference on Very Large Data Bases. Trondheim, 2005 : 922-933.
  • 9Kalashnikov D V, Ma Y, Mehrotra S, Hariharan R. Index for fast retrieval of uncertain spatial point data//Proceedings of the 14th ACM International Symposium on Geographic Information Systems. Arlington, 2006:195-202.
  • 10Chen J, Cheng R. Efficient evaluation of imprecise location- dependent queries//Proceedings of the 23rd International Conference on Data Engineering. Istanbul, 2007:586-595.

共引文献185

同被引文献50

引证文献5

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部