期刊文献+

综合能源系统多时间尺度优化调度模型研究 被引量:3

Research on Multi-time Scale Optimal Scheduling Model of Integrated Energy System
下载PDF
导出
摘要 考虑到风光出力的随机性与各能源负荷的波动性对综合能源系统(integrated energy system,IES)的影响,构建出在基于多时间尺度下的IES能量优化调度模型。该模型以平抑系统功率波动为主要目标,建立起日前与日内两种时间尺度的优化调度模型,通过所建立的多时间尺度上层与下层约束条件确定系统的能量流动与功率平衡,同时根据运行方式完成在不同时间尺度下对IES系统的优化调度。仿真结果表明:多时间尺度下的优化调度有助于减轻IES的功率负担,降低外界不确定性对系统运行的干扰,提高系统稳定性。 Aimed at the impacts of wind-solar hybrid power generation uncertainties and energy load fluctuation on integrated energy system(IES),a coordinated optimal scheduling model for IES is constructed considering the multiple time scales.This model aims at suppressing the power fluctuation of the system,and the optimal scheduling models of day ahead and day inside time scales are established.The energy flow and power balance of the system are determined by the upper and lower constraints of the multi-time scales,and the optimal scheduling of IES system under different time scales is completed according to the operation mode.The simulation results show that the optimal scheduling under multi-time scales is helpful to reduce the power burden of IES,reduce the interference of external uncertainty to the system operation,and improve the system stability.
作者 张圆圆 樊小朝 史瑞静 左帅 孟光明 ZHANG Yuanyuan;FAN Xiaochao;SHI Ruijing;ZUO Shuai;MENG Guangming(College of Engineering Technology,Xinjiang University,Urumqi 830047,Xinjiang,China;Research Center of Education Ministry for Renewable Energy Power Generation and Grid Control(Xinjiang University),Urumqi 830047,Xinjiang,China;Xinjiang Institute of Engineering,Urumqi 830000,Xinjiang,China)
出处 《水力发电》 CAS 2022年第1期112-117,共6页 Water Power
基金 国家自然科学基金资助项目(51666017)。
关键词 综合能源系统(IES) 多能互补 多时间尺度 平抑功率波动 能量梯级利用 优化调度 integrated energy system(IES) multi energy complementary multi-time scale suppress power fluctuations energy cascade utilization optimal scheduling
  • 相关文献

参考文献7

二级参考文献90

  • 1毛宗强.氢能——我国未来的清洁能源[J].化工学报,2004,55(S1):296-302. 被引量:20
  • 2ETEMADI A H, DAVISON E J, IRAVANI R. A decentralized robust control strategy for multi-DER microgrids: Part lI performance evaluation [J]. IEEE Trans on Power Delivery, 2012, 27(4): 1854-1861.
  • 3ZAMANI M A, SIDHU T S, YAZDANI A. Investigations into the control and protection of an existing distribution network to operate as a microgrid: a case study [J]. IEEE Trans on Industrial Electronics, 2014, 61(4): 1904-i915.
  • 4CHAOUACHI A, KAMEL R M, ANDOULSI R, et al. Multiobjective intelligent energy management for a microgrid [J]. IEEE Trans on Industrial Electronics, 2013, 60(4): 1688-1699.
  • 5BASU A K, BHATTACHARYA A, CHOWDHURY S, et al. Planned scheduling for economic power sharing in a CHP- based micro-grid[J]. IEEE Trans on Power Systems, 2012, 27(1) : 30-38.
  • 6Tan X, Li Q, Wang H. Advances and trends of energy storage technology in microgfid[J]. International Journal of Electrical Power & Energy Systems, 2013, 44(1): 179-191.
  • 7Fubara T C, Cecelja F, Yang A. Modelling and selection of micro-CHP systems for domestic energy supply: The dimension of network-wide primary energy consumption [J]. Applied Energy, 2014, 114: 327-334.
  • 8Campanari S, Macchi E. Technical and tariff scenarios effect on microturbine trigenerative applications [J]. Journal of Engineering for Gas Turbines and Power, 2004, 126(3): 581-589.
  • 9Swider D J. Compressed air energy storage in an electricity system with significant wind power generation [J]. IEEE Transactions on Energy Conversion, 2007, 22(1): 95-102.
  • 10Pandian M S, Anwari M, Husodo B Y, et al. Efficiency and economics analysis of Proton Exchange Membrane fuel celI[C]//IPEC, 2010 Conference Proceedings. IEEE, 2010: 875-880.

共引文献878

同被引文献34

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部