摘要
The prediction of particles less than 2.5 micrometers in diameter(PM2.5)in fog and haze has been paid more and more attention,but the prediction accuracy of the results is not ideal.Haze prediction algorithms based on traditional numerical and statistical prediction have poor effects on nonlinear data prediction of haze.In order to improve the effects of prediction,this paper proposes a haze feature extraction and pollution level identification pre-warning algorithm based on feature selection and integrated learning.Minimum Redundancy Maximum Relevance method is used to extract low-level features of haze,and deep confidence network is utilized to extract high-level features.eXtreme Gradient Boosting algorithm is adopted to fuse low-level and high-level features,as well as predict haze.Establish PM2.5 concentration pollution grade classification index,and grade the forecast data.The expert experience knowledge is utilized to assist the optimization of the pre-warning results.The experiment results show the presented algorithm can get better prediction effects than the results of Support Vector Machine(SVM)and Back Propagation(BP)widely used at present,the accuracy has greatly improved compared with SVM and BP.
基金
The work was financially supported by National Natural Science Fund of China,specific grant numbers were 61371143 and 61662033
initials of authors who received the grants were respectively Z.YM,H.L,and the URLs to sponsors’websites was http://www.nsfc.gov.cn/.This paper was supported by National Natural Science Fund of China(Grant Nos.61371143,61662033).