期刊文献+

一种基于深度学习的精子尾部识别方法

A Method of Sperm Tail Recognition Based on Deep Learning
下载PDF
导出
摘要 精子数量的多少是衡量男性生殖能力的重要指标,传统方法是通过显微镜和摄像系统放大并采集显微镜下动态图像,对图像中的精子进行计数或识别,但由于精液中含有很多的非精子成分(圆细胞、杂质等),会影响到对精子数量的判断。通过实验证明,本方法取得了比较好的效果,优点是通过精子尾部的识别,过滤掉精液中的非精子细胞或杂质,清晰的地呈现精液中的精子数量,为临床提供了很好的数据支撑。 The number of sperm is an important indicator to measure male reproductive ability.The traditional method is to magnify and collect dynamic images under the microscope through a microscope and camera system,and to count or identify the sperm in the image,however the semen contains a lot of non-sperm components(round cells,impurities,etc.),which will affect the judgment of sperm count.Experiments have shown that this method has achieved relatively good results.The advantage is that through the identification of the sperm tail,non-sperm cells or impurities in the semen are filtered,and the number of sperm in the semen is clearly displayed,which provides good data support for clinical practice.
作者 关天下 傅彰凯 Guan Tian-xia;Fu Zhang-kai(West China Second University Hospital,Sichuan University,Chengdu 610041,Sichuan Province,China)
出处 《科学与信息化》 2022年第1期162-164,共3页 Technology and Information
关键词 深度学习 精子尾部形态 人工智能 deep learning sperm tail morphology artificial intelligence
  • 相关文献

参考文献1

二级参考文献7

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部