期刊文献+

基于强化学习算法的能源工业云网智能接入方法研究

Research on Intelligent Access Method of Energy Industry Cloud Network based on Reinforcement Learning Algorithm
下载PDF
导出
摘要 针对多种通信协议结合强化学习算法设计一个通用的可智能解析的协议接口,加快协议间的模式匹配,降低数据传输的延时性,提高工业物联网的时效性。实现无缝切换不同的数据接口以适应不同的网络通信模式。同时,如何通过强化学习使获取的动作策略确定一种统一的数据接口规范,可使得平台接入体系对于多源异构电工装备的数据达到良好的兼容性,为电工装备智慧物联体系与应用提供数据基础。 A universal intelligently resolvable protocol interface is designed for multiple communication protocols combined with reinforcement learning algorithm to speed up pattern matching between protocols,reduce the delay of data transmission,and improve the timeliness of the Industrial Internet of Things so as to realize seamless switching between different data interfaces to adapt to different network communication modes.At the same time,how to determine a unified data interface specification for the acquired action strategy through reinforcement learning can make the platform access system achieve good compatibility with the data of multi-source heterogeneous electrical equipment,and provide data basis for the intelligent system and application of electrical equipment.
作者 孙喜民 王明达 常江 陈昕 李海茹 Sun Ximin;Wang Mingda;Chang Jiang;Chen Xin;Li Hairu
出处 《时代汽车》 2022年第1期14-16,共3页 Auto Time
关键词 能源工业云网 强化学习 智能接入 边缘数据处理 energy industry cloud network reinforcement learning intelligent access edge data processing
  • 相关文献

参考文献4

二级参考文献29

  • 1马寿峰,卜军峰,张安训.交通诱导中系统最优与用户最优的博弈协调[J].系统工程学报,2005,20(1):30-37. 被引量:22
  • 2Bell M G H.Game theory approach to measuring the performance reliability of transport networks[J].Transportation Research,Part B:Methodological,2000,34(6):533-545.
  • 3Chris Cassir,Michael Bell.A normative assessment of transport network reliablity based on game theory[C].The First International Symposium on Transportation Network Reliability,July,2001:103-108.
  • 4Chen O J,Ben-Akiva M E.Game-theoretic formulations of interaction between dynamic traffic control and dynamic traffic assignment[J].Transportation Research Record,1998,16(17):179-188.
  • 5Yasuo Asakura.Evaluation of network reliability using stochastic user equilibrium[J].Journal of Advanced Transportation,1999,33(2):147-158.
  • 6Adler J L,Satapathy G,Manikonda V,et al.A multi-agent approach to cooperative traffic management and route guidance[J].Transportation Research Part B,2005,39(4):297-318.
  • 7Mahmassani H S,Hu T Y,Peeta S,et al.Devel opment and testing of dynamic traffic assignment and simulation procedures for ATIS/ATMS application[EB/OL].http://plan2op.fhwa.dot.gov / pdfs/pdf2/ED107884.pdf,1994.
  • 8K Kar and S Banerjee. Node placement for connected coverage in sensor networks[ C ]. In Proceedings of the Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks. Sophia Antipolis, France, 2003.
  • 9Heo Nojeong and Pramod K Varshney. A distributed self spreading algorithm for mobile wireless sensor networks [ J ]. Wireless Communications and Networking, 2003. WCNC 2003, IEEE 2003.
  • 10F Xue and P R Kumar. The number of neighbors needed for connectivity of wireless networks[ J]. Wireless Networks, Mar. 2004, 10(2) :169 - 181.

共引文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部