期刊文献+

Hastily formed knowledge networks and distributed situation awareness for collaborative robotics

原文传递
导出
摘要 In the context of collaborative robotics,distributed situation awareness is essential for supporting collective intelligence in teams of robots and human agents where it can be used for both individual and collective decision support.This is particularly important in applications pertaining to emergency rescue and crisis management.During operational missions,data and knowledge are gathered incrementally and in different ways by heterogeneous robots and humans.We describe this as the creation of Hastily Formed Knowledge Networks(HFKNs).The focus of this paper is the specification and prototyping of a general distributed system architecture that supports the creation of HFKNs by teams of robots and humans.The information collected ranges from low-level sensor data to high-level semantic knowledge,the latter represented in part as RDF Graphs.The framework includes a synchronization protocol and associated algorithms that allow for the automatic distribution and sharing of data and knowledge between agents.This is done through the distributed synchronization of RDF Graphs shared between agents.High-level semantic queries specified in SPARQL can be used by robots and humans alike to acquire both knowledge and data content from team members.The system is empirically validated and complexity results of the proposed algorithms are provided.Additionally,a field robotics case study is described,where a 3D mapping mission has been executed using several UAVs in a collaborative emergency rescue scenario while using the full HFKN Framework.
出处 《Autonomous Intelligent Systems》 2021年第1期244-272,共29页 自主智能系统(英文)
基金 This work has been supported by the ELLIIT Network Organization for Information and Communication Technology,Sweden(Project B09)and the Swedish Foundation for Strategic Research SSF(Smart Systems Project RIT15-0097) The first author is also supported by an RExperts Program Grant 2020A1313030098 from the Guangdong Department of Science and Technology,China in addition to a Sichuan Province International Science and Technology Innovation Cooperation Project Grant 2020YFH0160.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部