摘要
建立了一类具有两种感染途径和接种的出血热模型,确定了模型的基本再生数R_(0),利用Routh-Hurwitz判据和LaSalle不变集原理,讨论了模型平衡点的局部稳定性.结果表明:当R_(0)<1时,模型仅存在唯一的无病平衡点,且无病平衡点是局部渐近稳定的;当R_(0)>1时,无病平衡点不稳定,模型还存在地方病平衡点,且地方病平衡点局部渐近稳定,最后证明了疾病存在的持久性.
Due to the transmission of hemorrhagic fever,a hemorrhagic fever model with two infecton routes and vaccination was established.The basic reproduction number R_(0) was obtained,and local stability of the equilibria was discussed by using the Routh-Hurwitz criterion and LaSalle invariant set principle.Our results show that if R_(0)<1,there is only a disease-free equilibrium,which is locally asymptotically stable,and if R_(0)>1,the disease-free equilibrium is unstable,there also exists a unique endemic equilibrium,which is locally asymptotically stable.Finally,the persistence of the disease was proved.
作者
李凤
刘俊利
LI Feng;LIU Jun-li(Xi′an Medical College,Xi′an 710309,China;Xi′an Polytechnic University,Xi′an 710032,China)
出处
《云南师范大学学报(自然科学版)》
2022年第1期28-33,共6页
Journal of Yunnan Normal University:Natural Sciences Edition
基金
国家自然科学基金资助项目(11801431)
陕西省自然科学基础研究计划资助项目(2021JM-445)
陕西省青年杰出人才计划资助项目(10701000506)
西安医学高等专科学校科研基金资助项目(20S01).