期刊文献+

新冠肺炎患者出院1个月后呼吸功能障碍预测列线图的构建与验证 被引量:1

Development and Validation of a Nomogram for Prediction of Respiratory Dysfunction One Month after Discharge in COVID-19 Patients
下载PDF
导出
摘要 目的利用单中心研究队列建立和验证新型冠状病毒肺炎(新冠肺炎)患者出院1个月后的呼吸功能障碍预测列线图。方法前瞻性分析96例新冠肺炎患者的临床资料,对缺失的数据进行多重插补。数据降维、预测变量筛选采用LASSO(the least absolute shrinkage and selection operator)回归模型,采用多元Logistic回归分析建立预测模型,并制作列线图。从区分度、校准度与内部验证方面对列线图的性能进行评估。结果在LASSO回归模型中从8个潜在预测变量中选择了6个非零系数的预测变量,包括年龄、性别、就医延迟天数(DMT)、临床分型、吸烟史和基础疾病,该模型具有良好的区分性,一致性指数(C-index)为0.78(95%CI:0.69~0.87)。结论研究建立的新冠肺炎患者出院1个月后呼吸功能障碍预测列线图具有较好的区分度和校准度。该列线图的建立有助于医务人员提高对新冠肺炎患者出院1个月后呼吸功能障碍程度的预测,从而及时调整治疗方案,提高疗效,降低呼吸功能障碍的风险。 Objective To develop and validate a nomogram for the prediction of respiratory dysfunction 1 month after discharge in patients with COVID-19 using a single-center study cohort.Methods Clinical data of 96 patients with COVID-19 were prospectively analyzed.Multiple imputation was used to deal with the missing data.The least absolute shrinkage and selection operator(LASSO)regression model was used for data dimension reduction and predictive factor selection.The predictive model was established by multivariable logistic regression analysis,and the selected risk factors were incorporated to develop a nomogram.The performance of the nomogram was assessed with respect to its calibration,discrimination and internal validation.Results In the LASSO regression model,6 predictors with non-zero coefficients were selected from the 8 potential predictors,including age,gender,delayed medical treatment,clinical classification,smoking history and underlying disease.The model showed good discrimination,with a C-index of 0.78(95%CI:0.69-0.87).Conclusion The nomogram developed for the prediction of respiratory dysfunction 1 month after discharge in patients with COVID-19 has good discrimination and calibration.It can help medical staff to improve their prediction of the degree of respiratory dysfunction in COVID-19 patients 1 month after discharge and thereby to timely adjust treatment regiments for enhancing efficacy and reducing the risk of respiratory dysfunction.
作者 江健 沈鹏 游煌俊 刘冲冲 李墨逸 周从阳 王子雯 冯珍 JIANG Jian;SHEN Peng;YOU Huang-jun;LIU Chong-chong;LI Mo-yi;ZHOU Cong-yang;WANG Zi-wen;FENG Zhen(Department of Rehabilitation Medicine,the First Affiliated Hospital of Nanchang University,Nanchang 330006,China;Department of Emergency Medicine,the First Affiliated Hospital of Nanchang University,Nanchang 330006,China)
出处 《实用临床医学(江西)》 CAS 2021年第6期1-5,9,共6页 Practical Clinical Medicine
基金 江西省科技厅、江西省中医药管理局重点项目(定向委托)(2020YBBGWL009)。
关键词 新型冠状病毒肺炎 呼吸功能障碍 列线图 预测 COVID-19 respiratory dysfunction nomogram prediction
  • 相关文献

参考文献3

二级参考文献4

共引文献86

同被引文献40

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部