期刊文献+

基于单目稀疏法多传感器融合移动机器人定位 被引量:4

Multi-sensor Fusion Mobile Robot Localization Based on Monocular Sparse Method
下载PDF
导出
摘要 针对移动机器人室内定位过程中,单目视觉难适应光照变化、里程计累计误差导致定位误差较大问题,提出边缘侧多传感器融合的定位方法。以稀疏直接法(半直接法)作为单目视觉的前端,实时单目相机估计位姿,通过惯性传感器恢复尺度输出位置信息,并且获取IMU的加速度以及偏航角、里程计当前速度,通过扩展卡尔曼滤波算法融合3种传感器信息,实现更加精确的定位。在移动机器人侧处理传感器读取的信息,从而减小机器人体积。边缘侧混合式多传感器信息融合使移动机器人在单个传感器失效以及无法人为干预时,也能够精确实时地在多种复杂环境中完成自主定位。 Aiming at the problem that monocular vision is difficult to adapt to light changes during the indoor positioning of mobile robots,and the cumulative error of odometer leads to positioning errors,a positioning method based on edge measurement and multisensor fusion was proposed.Using sparse direct method(semi-direct method)as the front end of monocular vision,real-time monocu⁃lar camera was used to estimate position and attitude,inertial sensor was used to recovery scale output position information,IMU accel⁃eration,yaw angle and current speed of odometer were obtained.The multiple sensor information was fused through extension Kalman filter algorithm for more precise positioning.The information read by the sensors was processed on the mobile robot side to reduce the robot volume.Edge-side hybrid multi-sensor information fusion enables mobile robots to accurately and real-time complete autonomous positioning in a complex environments even when the sensors are reset and cannot be interfered by human intervention.
作者 王立玲 李森 马东 WANG Liling;LI Sen;MA Dong(College of Electronic and Information Engineering,Hebei University,Baoding Hebei 071002,China;Key Laboratory of Digital Medical Engineering of Hebei Province,Baoding Hebei 071002,China)
出处 《机床与液压》 北大核心 2021年第24期17-22,共6页 Machine Tool & Hydraulics
基金 国家自然科学基金项目(61703133) 国家重点研发计划(2017YFB1401200)。
关键词 多传感器融合 扩展卡尔曼滤波 单目视觉 移动机器人 Multi-sensor fusion Extended Kalman filter Monocular vision Mobile robot
  • 相关文献

参考文献4

二级参考文献22

  • 1黄凤钊,彭允祥.GPS/SINS伪距(伪距变化率)组合导航系统实验研究[J].中国惯性技术学报,1998,6(2):1-9. 被引量:6
  • 2闫捷,徐晓苏,张涛,刘义亭,吴亮.舰载小型化SINS/GNSS紧组合导航系统设计[J].中国惯性技术学报,2013,21(6):775-780. 被引量:9
  • 3杨涛,赵子阳,李醒飞,蔡玲.多星座GNSS/INS紧耦合方法[J].中国惯性技术学报,2015,23(1):38-42. 被引量:9
  • 4严恭敏,秦永元,杨波.车载航位推算系统误差补偿技术研究[J].西北工业大学学报,2006,24(1):26-30. 被引量:41
  • 5刘基于.全球定位系统原理及应用[M].测绘出版社,1993..
  • 6Wang Jin,Gao Zhongyu,Dong Jinxing,Zhang Rong.Real Time Estimations of Position and Gravity Vector for an Inertial Survey System.Proc of Symposium of Gyro Technology,Stuttgart,Germany:1995
  • 7Grewal M S,Weill L R,Andrews A P. Global positioning systems, inertial navigation, and integration (2nd edition)[M]. John Wiley&Sons, Inc,2007.
  • 8Schwarz K P, E1-Sheimy N. Digital mobile mapping systems- state of the art and future trends [M]. Taylor & Francis & Group, 2007.
  • 9Osiander R,Darrin M G,Champion J L. MEMS and Microstructures in Aerospace Application [M]. CRC Press, 2006.
  • 10Barbour N,Hopkins R,Kourepenis A. Inertial MEMS Systems and Applications [M]. NATO Lecture series, RTO- EN-SET-116, Low-Cost Navigation Sensors and Integration Technology, 2011.

共引文献70

同被引文献58

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部