期刊文献+

基于改进蚁群算法的三维路径规划研究 被引量:13

Research on 3D path planning based on improved ant colony algorithm
下载PDF
导出
摘要 针对蚁群算法在三维路径规划中存在的搜索效率低,易陷入停滞和局部最优等问题,对蚁群算法进行了改进。首先,根据最优路径的自身特点对初始信息素进行不均匀分配,提高算法初期的搜索效率;其次,在启发函数中引入夹角因素,使算法对于最优路径的搜索更具有方向性,并对信息素和启发函数的权重因子α和β的取值进行动态调整,加快算法收敛速度;最后,对信息素更新规则提出改进,设定迭代阈值,对信息素挥发系数加以完善,避免算法陷入局部最优。通过栅格法对三维环境建模,仿真结果证明了改进后蚁群算法的可行性和有效性。 Aiming at the problems of low searching efficiency,easy stagnation and local optimum of ant colony algorithm in three-dimensional(3D)path planning,an adaptive improvement is proposed for ant colony algorithm.Firstly,according to the characteristics of optimal path,the initial pheromone is unevenly distributed to improve the initial searching efficiency of the algorithm.Secondly,introduce the angle factor in the heuristic function,make the algorithm more directional for the search of the optimal path,and the values of the weight factorsαandβof the pheromone and heuristic function are dynamicly adjusted,and accelerate the convergence speed of the algorithm.Finally,the pheromone update rule is improved,the iterative threshold is set,and the pheromone volatilization coefficient is improved to avoid the algorithm falling into local optimum.The three-dimensional environment is modeled by the grid method.The simulation results demonstrate the feasibility and effectiveness of the improved ant colony algorithm.
作者 鲁飞 鲁照权 牛晨 孙伟业 詹浩东 LU Fei;LU Zhaoquan;NIU Chen;SUN Weiye;ZHAN Haodong(School of Electrical and Automation Engineering,Hefei University of Technology,Hefei 230009,China)
出处 《传感器与微系统》 CSCD 北大核心 2022年第1期45-49,共5页 Transducer and Microsystem Technologies
基金 国家级大学生创新项目(2011710359008) 合肥工业大学产学研校企合作基金资助项目(W2016JSKF0467,W2016JSKF0468)。
关键词 蚁群算法 三维路径规划 最优路径 信息素 启发函数 ant colony algorithm 3D path planning optimal path pheromone heuristic function
  • 相关文献

参考文献11

二级参考文献84

  • 1吴晓涛,孙增圻.用遗传算法进行路径规划[J].清华大学学报(自然科学版),1995,35(5):14-19. 被引量:76
  • 2TAN Guan-Zheng,HE Huan,SLOMAN Aaron.Ant Colony System Algorithm for Real-Time Globally Optimal Path Planning of Mobile Robots[J].自动化学报,2007,33(3):279-285. 被引量:26
  • 3叶文,朱爱红,范洪达.低空突防航路规划算法综述[J].系统仿真学报,2007,19(10):2357-2361. 被引量:29
  • 4Chaomin Luo,S X Yang,M Q H Meng.Neuro dynamics based Complete Coverage Navigation with Real-time Map Building in Unknown Environments,Intelligent Robots and Systems[J].IEEE/RSJ.International Conference on,Oct.2006.4228-4233.
  • 5O Khatib.Rea-time obstacle avoidance for manipulators and mobilerobots[J].The International Journal of Robotics Research,1986,5(1).
  • 6Simon X Yang,Max Q H Meng.Real-Time Collision-Free Motion Planning of a Mobile Robot Using a Neural Dynamics-Based Approach[J].IEEE Transactions on Neural Neural Networks,2003,14(6).
  • 7Dorigo M, Maniezzo Vittorio, Colorni Alberto. The Ant System: Optimization by a colony of cooperating agents [J]. IEEE Transactions on Systems, Man, and Cybernetics--Part B,1996, 26(1): 1-13.
  • 8Dorigo M, Gambardella L M. Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem [J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 53-66.
  • 9Schoonderwoerd R, Holland O, Bruten J, Rothkrantz L. Ant-based Load Balancing in Telecommunications Networks [J]. Adaptive Behavior, 1997, 5(2): 169-207.
  • 10Mushy R R.人工智能机器人学导论[M].北京:电子工业出版社,2004.

共引文献372

同被引文献136

引证文献13

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部