摘要
利用定性分析的方法,研究了一类具有饱和恢复率的随机SIR传染病模型。首先在确定型模型中引入参数的随机扰动,利用Lyapunov方法讨论了随机模型正解的存在性及唯一性,进而使用Itô公式及强大数定律得到了I(t)、R(t)趋于零的充分性条件。结果表明,当白噪声足够大时,染病者、治愈者将消失。
By using the method of qualitative analysis,a kind of stochastic SIR epidemic model with saturated recovery rate is studied.First,the random disturbance of the parameters is introduced into the deterministic model,and the existence and uniqueness of the positive solution of the random model are discussed based on the Lyapunov method.Then the Itôformula and the law of strong large numbers are used to obtain the sufficiency conditions of I(t)and R(t)tending to zero.The results show that when the white noise is large enough,the infected and recovered will disappear.
作者
刘娟
陈功
LIU Juan;CHEN Gong(School of Science,Bengbu University,Bengbu Anhui,233030)
出处
《山西大同大学学报(自然科学版)》
2021年第6期15-18,共4页
Journal of Shanxi Datong University(Natural Science Edition)
基金
国家自然科学基金资助项目[12001001]
安徽省大学生创新创业训练项目[S201911305105]。
关键词
SIR仓室模型
随机微分方程
全局正解
灭绝性
SIR component model
stochastic differential equation
global positive solution
extinction