期刊文献+

Ti掺杂LiZnAs的电子结构和磁学性能 被引量:2

Study on Electronic Structure and Magnetic Properties of Ti Doped LiZnAs
下载PDF
导出
摘要 通过采用第一性原理计算,研究Ti不同掺杂位置对LiZnAs电子结构和磁学性能的影响.在Ti原子附近,随机位置添加Li间隙原子,进而为掺杂体系引入电子载流子,研究电子载流子对掺杂体系磁稳定性的影响.结果表明:Li(ZnTi)As体系的磁性起源于p-d杂化作用,p-d杂化导致Ti-3d电子自旋极化.掺杂组态的磁矩主要由Ti原子提供,其中最近邻掺杂组态Ti提供的原子磁矩最大为1.90μ_(B).Li(ZnTi)As体系的基态为铁磁稳定,Ti离子间通过双交换作用发生铁磁耦合.Li间隙原子属于n型掺杂,为掺杂体系提供电子载流子.巡游的载流子有助于磁性离子之间的电子交换,体系的铁磁稳定性增强. First-principle calculations were performed to study the electronic structure and magnetic properties of Ti-doped LiZnAs.The extra electronic carrier was introduced by the introduction of Li interstitial doped randomly near the Ti atoms.The results showed that the magnetism derived from p-d hybridization in Li(ZnTi)As system.The magnetic moment was mainly provided by Ti atoms and the maximum magnetic moment appeared in Ti@(0,1)configuration,1.90μB.The ground state of Li(ZnTi)As system was ferromagnetic stable,and ferromagnetic coupling occurred between Ti atoms through double exchange.Li interstitial belonged to n-type doping,providing electronic carrier for the doped system.The itinerant carrier contributed to the electron exchange between magnetic ions and enhanced the ferromagnetic stability of the system.
作者 王满富 何明 崔岩 陶华龙 张志华 WANG Manfu;HE Ming;CUI Yan;TAO Hualong;ZHANG Zhihua(School of Materials Science and Engineering,Dalian Jiaotong University,Dalian 116028,China;School of Physics and Materials Engineering,Dalian Minzu University,Dalian 116600,China)
出处 《大连交通大学学报》 CAS 2022年第1期68-72,共5页 Journal of Dalian Jiaotong University
基金 国家自然科学基金资助项目(51872034,52072058,51722205) 辽宁省科学技术研究计划资助项目(2020JH2/10100012) 辽宁省兴辽计划资助项目(XLYC1807173) 国家民族事务委员会新能源与稀土资源利用重点实验室课题资助项目(NERE201905) 大连市技术创新基金资助项目(2020JJ26GX043)。
关键词 第一性原理计算 电子结构 磁学性能 LiZnAs 电子载流子 first-principle calculations electronic structure magnetic properties LiZnAs electronic carrier
  • 相关文献

参考文献1

二级参考文献52

  • 1Hachigo A,Nakahata H,Higaki K,et al. Heteroepitaxial growth of ZnO films on diamond (111) plane by magnetron sputtering. Appl Phys Lett,1994,65: 2556-2558.
  • 2Morkoc H,Strite S,Cao G B,et al. Large-band-gap SiC,Ⅲ-Ⅴ nitride, and Ⅱ-Ⅵ ZnSe-based semiconductor device technologies. J Appl Phys,1994,76: 1363-1398.
  • 3Cao H,Xu J Y,Zhang D Z. Spatial confinement of laser light in ac- tive random media. Phys Rev Lett,2000,84: 5584-5587.
  • 4Bagnall D M,Chen Y F,Zhu M Y,et al. Room temperature excitonic stimulated emission from zinc oxide epilayers grown by plasma-as- sisted MBE. J Cryst Growth,1998,184: 605-609.
  • 5Tang Z K,Wong G K L,Yu P,et al. Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films. Appl Phys Lett,1998,72: 3270-3272.
  • 6Wang Z L,Song J H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science,2006,312: 242-246.
  • 7Dietl T,Ohno H,Matsukura F,et al. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science, 2000,287: 1019-1022.
  • 8Ueda K,Tabata H,Kawai T. Magnetic and electric properties of transition-metal-doped ZnO films. Appl Phys Lett,2001,79: 988- 990.
  • 9Cho Y M,Choo W K,Kim H,et al. Effects of rapid thermal anneal- ing on the ferromagnetic properties of sputtered Zn 1 x (Co 0.5 Fe 0.5 ) x O thin films. Appl Phys Lett,2002,80: 3358-3360.
  • 10Jung S W,An S J,Yi G C,et al. Ferromagnetic properties of Zn 1 x Mn x O epitaxial thin films. Appl Phys Lett,2002,80: 4561-4563.

共引文献4

同被引文献20

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部