期刊文献+

与广义二次矩阵相关的广义Jordan积秩的不变性

Invariance of rank for generalized Jordan products of generalized quadratic matrices
下载PDF
导出
摘要 设A,B∈Cn×n为广义二次矩阵,C∈Cn×n,并定义广义Jordan积为AC+CB.应用广义二次矩阵和幂等矩阵的互为确定的关系,得到了由两个不同的幂等矩阵确定的广义二次矩阵A和B与任意矩阵C的广义Jordan积的秩不变性.该结果改进了已有二次矩阵的相关结果. AC+CBis called as the generalized Jordan product of generalized quadratic matricesAandB,for anyC∈C^(n×n).By applying mutual determination relationship between generalized quadratic matrix and idempotent matrix,we obtained invariance of rank for generalized Jordan products of generalized quadratic matrcesA,Band any complex matrixC,in whichA,Bare determined by two different idempotent matrices.The results improve the relevant results of quadratic matrices.
作者 吕洪斌 陈梅香 杨忠鹏 冯晓霞 LÜHongbin;CHEN Meixiang;YANG Zhongpeng;FENG Xiaoxia(School of Mathematics and Statistics,Beihua University,Jilin 132013,China;School of Mathematics and Finance,Putian University,Putian 351100,China;School of Mathematics and Statistics,Minnan Normal University,Zhangzhou 363000,China)
出处 《延边大学学报(自然科学版)》 CAS 2021年第4期289-296,共8页 Journal of Yanbian University(Natural Science Edition)
基金 吉林省科技发展计划项目(20190201139JC) 福建省自然科学基金(2021J011103)。
关键词 二次矩阵 广义二次矩阵 广义Jordan积 不变性 quadratic matrix generalized quadratic matrix rank generalized Jordan product invariance
  • 相关文献

参考文献5

二级参考文献30

  • 1左可正.关于幂等矩阵与幂么矩阵的几个秩等式[J].湖北师范学院学报(自然科学版),2005,25(3):4-6. 被引量:5
  • 2Mikhail A Chebotar,Wen-Fong Ke,Pjek-Hwee Lee,et al. On Maps Preserving Zero Jordan Products[J]. Monatsh Math, 2006,149:91-101.
  • 3Y Tian,Styan. Rank Equalities for Idempotent and Involutory Matrices [ J ]. Linear Algebra and its Applications ,2001,335: 101-117.
  • 4Y Tian,Styan. Rank Equalities for Idempotent Matrices with Applications[J]. Linear Algebra and Its Applications,2006, 191:77-97.
  • 5T WAnderson,G P H Styan. Cochran's Theorem,Rank Additivity and Tripotent Matrices[C]//G Kallianpur,P R Kris- hnaiah, J K Ghosh. Statistics and Probability :Essays in Honor of C. R. Rao, North-Holland, Amsterdam, 1982 : 1-23.
  • 6Haiming Wang,Zhongpeng Yang,Minli Zeng. A Rank Equality of Matrices and It's Application[C]//Mathematical Sciences. Hangzhou:Proceedings of the Third International Workshop on Matrix Analysis and Applications,2009:334-336.
  • 7YuminYan,Zhongpeng Yang. A Note on Some Rank Equality for Involutory Matrices[C]//Mathematical Sciences. Hangzhou :Proceedings of the Third International Workshop on Matrix Analysis and Applications,2009:33-36.
  • 8Yongge Tian. Rank Equalities Related to Generalized Inverses of Matrices and Their Applications[J]. Internat J Marh RA, 2000 : 30.
  • 9Y Tian,G P H Styan. When Does Rank(ABC) = Rank(AB) + Rank(BC) - Rank(B)Hold[J]. Int J Math Educ Sci Technol,2002,33 : 127-137.
  • 10Yongge Tian. Rank equalities for idempotent and involutory matrices[J]. Linear Algebra and Applications. 2001,335:101-117.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部