期刊文献+

基于关键帧定位和时空图卷积的异常行为识别 被引量:5

Abnormal Behavior Recognition Based on Key Frame Location and Spatial-temporal Graph Convolution
下载PDF
导出
摘要 为提高监控视频中行人异常行为检测效率,提出了结合关键帧定位和时空图卷积的异常行为识别方法。该方法在人体骨架关键点检测的基础上,采用关键点运动特性定位视频中行人异常行为关键序列,利用时空图卷积网络可以提取行人时空特征的优点,在关键帧序列上构建人体骨架时空图,同时建立基于瓶颈残差模块的时空图卷积网络行为识别模型,实现对监控视频中行人异常行为的高效识别。采用自建数据集和公开数据集对该方法有效性进行检验,结果表明,该关键帧定位算法可高效实现异常行为定位,结合基于瓶颈残差模块时空图卷积网络,在减少时空图卷积网络计算复杂度的同时提升了网络性能,能够有效判断行人异常行为。 In order to improve the detection efficiency of pedestrian abnormal behavior in surveillance video,an abnormal behavior recognition method combining key frame positioning and spatio-temporal map convolution is proposed.Based on the detection of key points of human skeleton,this method uses key point motion characteristics to locate pedestrian anomalies in video behavior key sequence,using spatio-temporal map convolutional network to extract the advantages of pedestrian spatio-temporal features,construct the human skeleton spatio-temporal map on the key frame sequence,and establish a spatio-temporal map convolutional network behavior recognition model based on the bottleneck residual module to realize monitoring video efficient identification of abnormal behaviors of pedestrians in China.Selfbuilt data sets and public data sets are used to test the effectiveness of the method.The results show that the key frame positioning algorithm in this paper can efficiently locate abnormal behaviors,combined with the spatio-temporal graph convolution network based on the bottleneck residual module,while reducing the computational complexity of the spatio-temporal graph convolutional network,it improves the network performance and can effectively judge the abnormal behavior of pedestrians.
作者 刘嘉宇 陈平 LIU Jiayu;CHEN Ping(Shanxi Key Laboratory of Signal Capturing and Processing,North University of China,Taiyuan 030051,China)
出处 《机械与电子》 2022年第1期48-53,58,共7页 Machinery & Electronics
基金 国家自然科学基金资助项目(61971381) 山西省自然科学基金(201801D221206,201801D221207) 山西省研究生教育创新项目(2020BY098)。
关键词 异常行为 骨架检测 关键帧 骨架时空图 瓶颈残差 时空图卷积 abnormal behavior skeleton detection key frame skeletal space-time diagram bottleneck residual spatial-temporal graph convolution
  • 相关文献

参考文献9

二级参考文献49

  • 1沈军行,孙守迁,潘云鹤.从运动捕获数据中提取关键帧[J].计算机辅助设计与图形学学报,2004,16(5):719-723. 被引量:44
  • 2印勇,蒋海娜.优化初始聚类中心的关键帧提取[J].计算机工程与应用,2007,43(21):165-167. 被引量:6
  • 3Candamo J, Shreve M,Goldgof D B, et al. Understanding transit scenes: a survey on human behavior-recognition algorithms[J]. IEEE Transactions on Intelligent Transpor- tation Systems, 2010,11 ( 1 ) : 206-224.
  • 4Chandola V, Banerjee A, Kumar V. Anomaly detection-a survey[J]. ACM Computing Surveys, 2009,41 (3) ; 1-58.
  • 5Ke S R,Thuc H L U,Lee Y J. A review on video-based human activity recognition [J]. Computers, 2013,2 ( 2 ) 88-131.
  • 6Wang T, Snoussi H. Detection of abnormal visual events via global optical flow orientation histogram r-J]. IEEE Transactions on Information Forensics and Security, 2014, 9(6) :988-998.
  • 7Foroughi H,Alishahi M, Pourreza H. Distinguishing fall ac- tivities using human shape characteristics[A. Proc. of In- ternational Joint Conference on Computer information Systems Sciences and EngineeringEC. 2010,523-528.
  • 8Suriani N S, Hussain A. Sudden fall classification using motion features EA-I. Proc. of International Colloquium on Signal Processing and its Applications[C. 2012, 519- 524.
  • 9Rezaee K, Haddadania J, Delbari A. Intelligent detection of the falls in the elderly using fuzzy inference system and video-based motion estimation methodEA. Proc. of Irani- an Conference on Machine Vision and Image Processing, 2013,284-288.
  • 10Yu M,Yu Y,Rhuma A,et al. An online one class support vector machine-based person-specific fall detection sys- tem for monitoring an elderly individual in a room environ- ment[J]. IEEE Journal of Biomedical and Health Informat- ics, 2013,17(6) : 1002-1014.

共引文献61

同被引文献33

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部