期刊文献+

改进的模型参考自适应PID新风温度控制研究 被引量:7

Research on Improved Model Reference Adaptive PID Fresh Air Temperature Control
下载PDF
导出
摘要 太阳能新风系统将太阳能技术与相变蓄热两种方法应用于供暖系统中,通过太阳的能量使得新风温度升高,实现可再生能源的节能目标。当前,新风温度控制系统的控制方法虽然容易实现,但其控制性能不佳,超调现象较为明显。对温控模型进行分析,利用粒子群优化(PSO)算法对温控模型进行优化整定,得到最优的3个比例积分微分(PID)控制参数,并提出一类基于粒子群参数整定后的模型参考自适应PID控制方式,对室内新风系统温度进行控制。经MATLAB仿真证实,该控制方法的调节时间更少、超调量更小,取得了良好的控制性能,能够很好地应用于实际生产当中。 The solar fresh air system applies two methods of solar energy technology and phase change heat storage to the heating system.Through the energy of the sun,the temperature of the fresh air is raised to achieve the energy saving goal of renewable energy.Although the current control method of fresh air temperature control system is easy to implement,its control performance is poor and the overshoot phenomenon is obvious.The temperature control model is analyzed and optimized by particle swarm optimization(PSO)algorithm,and three optimal proportional integral differential(PID)control parameters are obtained.A model reference adaptive PID control method based on particle swarm optimization was proposed to control the temperature of indoor fresh air system.MATLAB simulation proves that the control method has less adjusting time and overshoot,and has achieved good control performance,which can be well applied to actual production.
作者 王丽丽 辛玲 WANG Lili;XIN Ling(School of Automation and Electronic Engineering,Qingdao University of Science and Technology,Qingdao 266061,China)
出处 《自动化仪表》 CAS 2021年第12期51-55,共5页 Process Automation Instrumentation
基金 山东省自然科学基金资助项目(2015ZRB019FA)。
关键词 比例积分微分控制 模型参考 自适应控制 参数整定 粒子群优化 新风系统 超调量 Proportional integral differential(PID)control Model reference Adaptive control Parameter setting Particle swarm optimization(PSO) Fresh air system Overshoot amount
  • 相关文献

参考文献5

二级参考文献38

  • 1万健如,张海波,曹才开.单神经元PID控制器永磁同步电机调速系统[J].电力电子技术,2005,39(1):75-77. 被引量:21
  • 2鲁民月,顾仲权,杨铁军.简化的结构振动自适应前馈控制方法研究[J].振动与冲击,2005,24(1):89-93. 被引量:9
  • 3刘辉,孙新波.高温高压釜加热系统的测温模型及控制[J].测井技术,2005,29(B02):30-32. 被引量:4
  • 4DONG H R,NINGB,CAIBG,etal.AutomaticTrainControlSystem Developmentand Simulationfor HighspeedRailways[J].IEEECircuitsandSystemsMagazine,2010,10(2):6-18.
  • 5SONG Q,SONG YD.Data-basedFault-tolerantControlofHigh-speedTrainswithTraction/BrakingNotchNonlinearitiesandActuatorFailures[J].IEEE TransactionsonNeuralNetworks,2011,22(12):2250-2261.
  • 6SONGQ,SONGYD,CAIW C.AdaptiveBacksteppingControlofTrainSystemswithTraction/BrakingDynamicsand Uncertain ResistiveForces[J].VehicleSystem Dynamics,2011,49(9):1441-1454.
  • 7SONGQ,SONGYD,TANGT,etal.ComputationallyInexpensiveTrackingControlof High-speed Trains withTraction/brakingSaturation[J].IEEETransactionsonIntelligentTransportationSystems,2011,12(4):1116-1125.
  • 8LIUDVINAVICIUSL,LINGAITISLP.ElectrodynamicBrakingin High-speed RailTransport[J].Transport,2007,XXⅡ(3):178-186.
  • 9NARENDRAKS,HANZ.TheChangingFaceofAdaptiveControl:theUseofMultipleModels[J].AnnualReviewsinControl,2011,35(1):1-12.
  • 10TORUN Y,TOHUMOGLU G.Designing SimulatedAnnealingandSubtractiveClusteringBasedFuzzyClassifier[J].AppliedSoftComputing,2011,11(2):2193-2201.

共引文献26

同被引文献62

引证文献7

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部