期刊文献+

基于网络集成的分角域高分辨雷达目标识别研究

A Study on HRRP ATR Using Angular Domain Partitioning Based on Neural Network Ensemble
下载PDF
导出
摘要 雷达探测中,目标识别是关键问题。借助人工智能技术提高雷达目标识别性能是近几年的研究热点。针对神经网络运用于雷达目标识别时存在的网络训练困难和数据量欠缺等问题,将网络集成的思想引入高分辨雷达目标识别,通过将传统目标识别方法与网络集成技术结合,降低网络的复杂度,减少对数据量的要求,并利用角域划分,建立分角域网络集成高分辨雷达目标识别架构,确保系统在低数据量下仍可获得较好的识别效果。雷达实测数据证明了该方法的有效性。 Radar automatic target recognition(ATR)is a difficult challenge in radar detection.Radar ATR based on artificial intelligence has become one of the research hotspots all over the world in recent years.A new architecture is proposed in this paper to solve the problem of poor data and network complexity by combination of traditional high range resolution profile(HRRP)radar ATR methods and neural network ensemble.By using the target angle information,recognition performance is improved while the workload of manual annotation and the train data are reduced too,and the processing flow is proposed.The results of radar real data verify that the new method is effective.
作者 李士国 孙晶明 LI Shiguo;SUN Jingming(Nanjing Research Institute of Electronics Technology,Nanjing 210039,China;Key Lahoratoiy of IntelliSense Technology,CETC,Nanjing 210039,China)
出处 《现代雷达》 CSCD 北大核心 2021年第12期1-6,共6页 Modern Radar
关键词 雷达 高分辨距离像 自动目标识别 神经网络集成 角域 radar high range resolution profile automatic target recognition neural network ensemble angular domain
  • 相关文献

参考文献5

二级参考文献29

共引文献303

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部