期刊文献+

RKR反演法计算SrCl分子的Franck-Condon因子

Calculated Franck-Condon Factors for SrCl Molecules by the RKR Method
下载PDF
导出
摘要 利用半经典的Rybreg-Klein-Rees(RKR)反演方法,结合实验测得SrCl分子的振动、转动等光谱常数导出相应的经典拐点r_(min)和r_(max),构造了A^(2)Π和X^(2)∑^(+)态的势能曲线.基于得到的势能曲线,通过求解一维Schrödinger方程得到A^(2)Π和X^(2)∑^(+)态的振动波函数,计算获得A^(2)Π-X^(2)∑^(+)跃迁高度对角化的Franck-Condon因子(f_(00)=0.964116),符合激光冷却分子的首要条件,为SrCl分子激光冷却提供理论基础. Combined with experimental spectral constants,the potential energy curves for X^(2)∑^(+) and A^(2)Π states of strontium chloride molecule were investigated by the method of Rybreg–Klein–Rees(RKR)inversion calculation.Based on the obtained potential energy curves of X^(2)∑^(+) and A^(2)Π states,the vibration energy levels and wave functions were determined by solving the Schrödinger equation using the discrete position presentation method.Meanwhile,the Franck-Condon factors of SrCl molecule were investigated.The highly diagonally distributed Franck-Condon factors(f00=0.964116)of A^(2)Π(v′=0)→X^(2)Σ^(+)(v″=0)transition meaned that the SrCl molecule were possibility for laser cooling experiments.
作者 刘德胜 孙金芳 韩玉龙 LIU Desheng;SUN Jinfang;HAN Yulong(General Education & Foreign Language College, Anhui Institute of Information Technology, Wuhu, Anhui 241003, China)
出处 《九江学院学报(自然科学版)》 CAS 2021年第4期64-67,共4页 Journal of Jiujiang University:Natural Science Edition
基金 2019年度安徽高校自然科学研究项目(编号KJ2019A1298) 2019年安徽省高校省级质量工程项目(编号2019xfxm87)的成果之一。
关键词 SrCl分子 RKR反演 FRANCK-CONDON因子 SrCl molecule RKR method franck-condon factor
  • 相关文献

参考文献2

二级参考文献19

  • 1W Coolley. An improved eigenvalue corrector formula for solving the schrdinger equation for central fields[J]. Math. Compu., 1961,15:363.
  • 2S. Kanfer, M.Shapiro. Inversion of the CH3(AX~G61A1) potential by the discrete position operator method[J]. J. Phys. Chem., 1984,88:3 964.
  • 3R. Kosloff, Time dependent quantum mechanical methods for molecular dynamics[J]. J.Phys. Chem., 1988,92:2 087.
  • 4S.K.Gray. Wave packet dynamics of resonance decay: an interative equation approach with application to HCO→H+CO[J]. J. Chem. Phys., 1992,96(9):6 543.
  • 5F.Karlsson, C.Jedrejek. Phase-integral and numerical calculations of matrix elements and Franck-Condon factors for Morse oscillators[J]. J. Chem. Phys., 1987,86(6):3 532.
  • 6M.D.Feit, J.A.Fleck, and A.Steiger. Solution of the Schrdinger equation by a spectral method[J]. J.Comp.Phys., 1982,47:412.
  • 7Kiriyama F, Rao B S. Electric dipole moment function of H79Br[J]. J Quant Spectrosc Radiat Trans, 2001, 69:567-572.
  • 8Le Roy R J. Level 7.5: a compute program for solving the radial Schrdinger equation for bound and quasibound levels[R]. University of Waterloo, Chemical Physics Research Report, 2002.
  • 9Huber K P, Herzberg G. Molecular spectra and molecular structure Ⅳ constants of diatomic molecules [M]. New York: Van Nostrand. 1979.
  • 10Niay P, Bernage P, Coquant C, et al. Détermination directe des coefficients du potentiel de Dunham par une méthode de moindres carrés non linéaire appliquée aux nombres d'ondes des raies-Application au cas de la molécule HBr[J]. Canad J Phys, 1977, 55:1829-1834.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部