期刊文献+

Genome-wide identification and expression analysis of GDSL esterase/lipase genes in tomato 被引量:1

下载PDF
导出
摘要 The GDSL esterase/lipase family contains many functional genes that perform important biological functions in growth and development, morphogenesis, seed oil synthesis, and defense responses in plants. The expression of GDSL esterase/lipase genes can respond to biotic and abiotic stresses. Although GDSL esterase/lipase family genes have been identified and studied in other plants, they have not been identified and their functions remain unclear in tomato. This study is the first to identify 80 GDSL esterase/lipase family genes in tomato, which were named SlGELP1–80. These genes were mapped to their positions on the chromosomes and their physical and chemical properties, gene structure, phylogenetic relationships, collinear relationships, and cis-acting elements were analyzed. The spatiotemporal expression characteristics of the Sl GELP genes in tomato were diverse. In addition, RNA-seq analysis indicated that the expression patterns of the SlGELP genes in tomato differed before and after inoculation with Stemphylium lycopersici. qRT-PCR was used to analyze the expression of five Sl GELP genes after treatments with S. lycopersici, salicylic acid and jasmonic acid. Finally, this study was the first to identify and analyze GDSL esterase/lipase family genes in tomato via bioinformatics approaches, and these findings provide new insights for improving the study of plant disease resistance.
出处 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2022年第2期389-406,共18页 农业科学学报(英文版)
基金 supported by the“Bai Qian Wan”Project of Heilongjiang Province,China(2019ZX16B02) the National Natural Science Foundation of China(32002059) the Heilongjiang Natural Science Foundation of China(LH2020C10) the Fellowship of China Postdoctoral Science Foundation(2020M681068)。
  • 相关文献

参考文献3

二级参考文献42

  • 1Hildmann T, Ebneth M, Pena-Cortes H, Sanchez-Serrano J J, Willmitzer L, Prat S. General roles of abscisic and jasmonic acids in gene activation as a result of mechanical wounding. Plant Cell 1992; 4:1157-1170.
  • 2Penninckx IA, Thomma BP, Buchala A, Metraux JP, Broekaert WF. Concomitant activation ofjasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 1998; 10:2103-2113.
  • 3Overmyer K, Tuominen H, Kettunen R, et al. Ozone-sensitive arabidopsis rcdl mutant reveals opposite roles for ethylene and jasmonate signaling pathways in regulating superoxidedependent cell death. Plant Cell 2000; 12:1849-1862.
  • 4Rao MV, Lee H, Creelman RA, Mullet JE, Davis KR. Jasmonic acid signaling modulates ozone-induced hypersensitive cell death. Plant Cell 2000; 12:1633-1646.
  • 5Kong HY, Jung HW, Lee SC, Choi D, Hwang BK. A gene encoding stellacyanin is induced in Capsicum annuum by pathogens, methyl jasmonate, abscisic acid, wounding, drought and salt stress. Physiol Plant 2002; 115:550-562.
  • 6Feys B, Benedetti CE, Penfold CN, Turner JG. Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. Plant Cell 1994; 6:751-759.
  • 7Xie DX, Feys BF, James S, Nieto-Rostro M, Turner JG. COIl: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 1998; 280:1091-1094.
  • 8Devoto A,-Nieto-Rostro M, Xie D, et al. COI1 links j asmonate signalling and fertility to the SCF ubiquitin-ligase complex in Arabidopsis. Plant J 2002; 32:457-466.
  • 9Xu L, Liu F, Lechner E, et al. The SCF(COI1) ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis. Plant Cell 2002; 14:1919-1935.
  • 10Staswick PE, Su W, Howell SH. Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. Proc Natl Acad Sci USA 1992; 89:6837-6840.

共引文献1281

同被引文献9

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部