期刊文献+

Predicting the pathological status of mammographic microcalcifications through a radiomics approach

原文传递
导出
摘要 Objective The study aimed to develop a machine learning(ML)-coupled interpretable radiomics signature to predict the pathological status of non-palpable suspicious breast microcalcifications(MCs).Methods We enrolled 463 digital mammographical view images from 260 consecutive patients detected with non-palpable MCs and BI-RADS scored at 4(training cohort,n=428;independent testing cohort,n=35)in the First Affiliated Hospital of Nanjing Medical University between September 2010 and January 2019.Subsequently,837 textures and 9 shape features were subsequently extracted from each view and finally selected by an XGBoostembedded recursive feature elimination technique(RFE),followed by four machine learning-based classifiers to build the radiomics signature.Results Ten radiomic features constituted a malignancy-related signature for breast MCs as logistic regression(LR)and support vector machine(SVM)yielded better positive predictive value(PPV)/sensitivity(SE),0.904(95%CI,0.865–0.949)/0.946(95%CI,0.929–0.977)and 0.891(95%CI,0.822–0.939)/0.939(95%CI,0.907–0.973)respectively,outperforming their negative predictive value(NPV)/specificity(SP)from 10-fold crossvalidation(10FCV)of the training cohort.The optimal prognostic model was obtained by SVM with an area under the curve(AUC)of 0.906(95%CI,0.834–0.969)and accuracy(ACC)0.787(95%CI,0.680–0.855)from 10FCV against AUC 0.810(95%CI,0.760–0.960)and ACC 0.800 from the testing cohort.Conclusion The proposed radiomics signature dependens on a set of ML-based advanced computational algorithms and is expected to identify pathologically cancerous cases from mammographically undecipherable MCs and thus offer prospective clinical diagnostic guidance.
出处 《Intelligent Medicine》 2021年第3期95-103,共9页 智慧医学(英文)
基金 supported in part by the State’s Key Project of Research and Development Plan(Grant Nos.2017YFC0109202 and 2017YFA0104302) in part by the National Natural Science Foundation(Grant No.61871117) in part by Science and Technology Program of Guangdong(Grant No.2018B030333001).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部