期刊文献+

Titanium Hydride Nanoplates Enable 5wt%of Reversible Hydrogen Storage by Sodium Alanate below 80℃ 被引量:1

原文传递
导出
摘要 Sodium alanate(NaAlH_(4))with 5.6 wt%of hydrogen capacity suffers seriously from the sluggish kinetics for reversible hydrogen storage.Ti-based dopants such as TiCl_(4),TiCl_(3),TiF_(3),and TiO_(2)are prominent in enhancing the dehydrogenation kinetics and hence reducing the operation temperature.The tradeoff,however,is a considerable decrease of the reversible hydrogen capacity,which largely lowers the practical value of NaAlH_(4).Here,we successfully synthesized a new Ti-dopant,i.e.,TiH_(2)as nanoplates with~50 nm in lateral size and~15 nm in thickness by an ultrasound-driven metathesis reaction between TiCl4 and LiH in THF with graphene as supports(denoted as NP-TiH_(2)@G).Doping of 7 wt%NP-TiH_(2)@G enables a full dehydrogenation of NaAlH4 at 80℃and rehydrogenation at 30℃under 100 atm H_(2)with a reversible hydrogen capacity of 5 wt%,superior to all literature results reported so far.This indicates that nanostructured TiH_(2)is much more effective than Tidopants in improving the hydrogen storage performance of NaAlH_(4).Our finding not only pushes the practical application of NaAlH_(4)forward greatly but also opens up new opportunities to tailor the kinetics with the minimal capacity loss.
出处 《Research》 SCIE EI CAS CSCD 2021年第1期1135-1147,共13页 研究(英文)
基金 the Natural Science Foundation of Zhejiang Province(LD21E010002) the National Outstanding Youth Foundation of China(52125104) the National Natural Science Foundation of China(52071285 and 52001277) the National Key R&D Program of China(2018YFB1502102) the Fundamental Research Funds for the Central Universities(2021FZZX001-09) the National Youth TopNotch Talent Support Program.
  • 相关文献

参考文献3

二级参考文献34

  • 1Schlapbach, L.; Ztittel, A. Hydrogen-storage materials for mobile applications. Nature 2001, 414, 353 358.
  • 2Li, L.; Xu, C. C.; Chen, C. C.; Wang. Y. J.; Jiao, L. F,; Yuan, H. T. Sodium alanate system for efficient hydrogen storage. Int. 31 Hydrogen Energy 2013, 21, 8798-8812.
  • 3Ziittel, A.; Wenger, P.; Rentsch, S.; Sudan, P.; Mauron, Ph,; Emmenegger, Ch. LiBH4 a new hydrogen storage material. J. Power Sources 2003, 118, 1 7.
  • 4Cui, J.; Liu, J. W.; Wang, H.; Ouyang, L. Z4 Sun, D. L.; Zhu, M.; Yao, X. D. Mg-TM (TM: Ti, Nb, V, Co, Mo or Ni) core-shell like nanostructures: Synthesis, hydrogen storage performance and catalytic mechanism. J. Mater. Chem. A 2014, 2, 9645-9655.
  • 5Chlopek, K.; Frommen, C.; L6on, A.; Zabara, O.; Fichtner, M. Synthesis and properties of magnesium tetrahydroborate, Mg(BH4)2. J. Mater. Chem. 2007, 17, 3496-3503.
  • 6Kim, J. H.; Jin, S. A.; Shim, J. H.; Cho, Y. W. Thermal decomposition behavior of calcium borohydride Ca(BH4)2. J. Alloys Compd. 2008, 461, L20-L22.
  • 7Bogdanovi6, B.; Schwickardi, M. Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials. J. Alloy Compd. 1997, 253, 1-9.
  • 8Bogdanovi6, B.; Felderhoff, M.; Pommerin, A.; Schiith, F.; Spielkamp, N. Advanced hydrogen-storage materials based on Sc-, Ce-, and Pr-doped NaAIH4. Adv. Mater. 2006, 18, 1198-1201.
  • 9Hu, J. J.; Ren, S. H.; Witter, R.; Fichtner, M. Catalytic influence of various cerium precursors on the hydrogen sorption properties of NaA1H4. Adv. Energy Mater. 2012, 2, 560-568.
  • 10Raft, U. D.; Qu, X. H.; Li, P.; Zhang, L.; Wan, Q.; lqbal, M. Z.; Rafique, M. Y.; Farooq, M. H.; Islam, U. D. Superior catalytic effects of Nb2Os, TiO2 and Cr203 nanoparticles in improving the hydrogen sorption properties of NaAIH4. J. Phys. Chem. C2012, 116, 11924-11938.

共引文献16

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部