期刊文献+

利用掺杂诱导的金属-N活性位点和带隙调控提升石墨相氮化碳的光催化产氢性能 被引量:3

Doping-induced metal–N active sites and bandgap engineering in graphitic carbon nitride for enhancing photocatalytic H_(2 )evolution performance
下载PDF
导出
摘要 由于石墨相氮化碳(g-C_(3)N_(4))的独特结构和性质,特别是其具有合适的能带结构位置及可调控的晶体结构,被广泛应用于光催化产氢反应中.然而,纯相氮化碳具有较快的光生电荷复合速率,这使其光催化产氢活性较低.目前,利用非金属或过渡金属原子掺杂可有效提升电荷分离速度,从而提高光催化产氢活性.相比于非金属掺杂,g-C_(3)N_(4)的三嗪环中的吡啶氮可提供丰富的孤电子对,可将过渡金属离子留在框架结构中以形成金属-N键,在催化反应中充当活性位点.本文采用简单的热聚合方法将过渡金属原子(M=Fe,Co和Ni)掺杂在g-C_(3)N_(4)中,从而实现了g-C_(3)N_(4)的原子级结构的调控.结合X射线衍射仪技术、傅里叶变换红外吸收光谱仪、X射线光电子能谱分析、扫描电子显微镜和透射电子显微镜分析,结果表明,金属原子被成功引入g-C_(3)N_(4)中,且不破坏其原有结构,掺杂后的g-C_(3)N_(4)仍呈现片状形貌.结合XPS和DFT计算结果发现,掺杂的过渡金属原子会进入三嗪环中与周围N配位形成金属-N键;活性H原子会优先吸附于金属-N键上来参与水分解反应,证实了金属-N键为光催化产氢反应中的活性位点,并且过渡金属原子的掺杂有利于光催化反应进行.g-C_(3)N_(4)中的过渡金属原子掺杂导致活性H原子吸附能降低,使得光催化产氢反应更容易进行.此外,对光电流、阻抗、瞬态荧光光谱、固体紫外可见光谱和电子顺磁共振等测试结果表明,光生电子可沿着金属-N键迁移,从而加速了光生载流子的分离;过渡金属原子掺杂可减小g-C_(3)N_(4)的带隙并提升导带位置,从而促进了对光的吸收,提高还原能力.与纯相的g-C_(3)N_(4)相比,掺杂过渡金属原子的g-C_(3)N_(4)表现出更高的光催化产氢活性,其中,Co掺杂的样品呈现出最高的产氢活性.综上,本文研究结果表明过渡金属原子的掺杂可增强g-C_(3)N_(4)的光催化产氢性能,从而有助于开发出高效的光催化剂. Durable and inexpensive graphitic carbon nitride(g-C_(3)N_(4))demonstrates great potential for achieving efficient photocatalytic hydrogen evolution reduction(HER).To further improve its activity,g-C_(3)N_(4)was subjected to atomic-level structural engineering by doping with transition metals(M=Fe,Co,or Ni),which simultaneously induced the formation of metal-N active sites in the g-C_(3)N_(4)framework and modulated the bandgap of g-C_(3)N_(4).Experiments and density functional theory calculations further verified that the as-formed metal-N bonds in M-doped g-C_(3)N_(4)acted as an"electron transfer bridge",where the migration of photo-generated electrons along the bridge enhanced the efficiency of separation of the photogenerated charges,and the optimized bandgap of g-C_(3)N_(4)afforded stronger reduction ability and wider light absorption.As a result,doping with either Fe,Co,or Ni had a positive effect on the HER activity,where Co-doped g-C_(3)N_(4)exhibited the highest performance.The findings illustrate that this atomic-level structural engineering could efficiently improve the HER activity and inspire the design of powerful photocatalysts.
作者 于晓慧 苏海伟 邹建平 刘芹芹 王乐乐 唐华 Xiaohui Yu;Haiwei Su;Jianping Zou;Qinqin Liu;Lele Wang;Hua Tang(Engineering Institute of Advanced Manufacturing and Modern Equipment Technology,Jiangsu University,Zhenjiang 212013,Jiangsu,China;Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle,Nanchang Hangkong University,Nanchang 330063,Jiangxi,China;School of Materials Science and Engineering,Jiangsu University,Zhenjiang 212013,Jiangsu,China;School of Environmental Science and Engineering,Qingdao University,Qingdao 266071,Shandong,China)
出处 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第2期421-432,共12页 催化学报(英文)
基金 国家自然科学基金(21975110,21972058).
关键词 石墨相氮化碳 光催化产氢 金属-N活性位点 过渡金属掺杂 带隙调控 g-C_(3)N_(4) Photocatalytic H_(2)generation Metal-N active sites Transition metal doping Band gap engineering
  • 相关文献

同被引文献52

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部